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Estimation of photon counting statistics with imperfect detectors∗
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The study on photon counting statistics is of fundamental importance in quantum optics. We theoretically analyzed the
imperfect detection of an arbitrary quantum state. We derived photon counting formulae for six typical quantum states (i.e.,
Fock, coherent, squeeze-vacuum, thermal, odd and even coherent states) with finite quantum efficiencies and dark counts
based on multiple on/off detector arrays. We applied the formulae to the simulation of multiphoton number detections
and obtained both the simulated and ideal photon number distributions of each state. A comparison between the results by
using the fidelity and relative entropy was carried out to evaluate the detection scheme and help select detectors for different
quantum states.
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1. Introduction
Quantum optics is recognized as a counter-intuitive the-

ory because of its non-classical properties. It has been
widely used in applications such as quantum informa-
tion technology,[1–5] quantum teleportation,[6–8] and quantum
computation.[9–12] Photon number detection[13,14] is consid-
ered as an essential branch of quantum technology in photonic
systems. The unknown quantum state to be measured does
not always consist of only one photon. For multiphoton de-
tections, photon-number-resolving (PNR) detectors[15–17] are
regarded as the simplest apparatus as the photon number distri-
bution can be provided directly. However, they are not widely
used because of their low efficiency.[18] The on/off detectors
made of avalanche photodiodes exhibit a high efficiency,[19,20]

but the number of incoming photons cannot be distinguished.
Sperling et al. proposed a robust method for photon detec-
tion by using an on/off detector array instead of the PNR
detector.[21] The schematic is illustrated in Fig. 1, where an
unknown quantum state is divided equally into N ports via a
series of hypothetical unitary operations. At each port, there
is an on/off detector for photon detection. The total number of
clicks of the detectors can then be counted, which is approx-
imately recognized as the photon number distribution. The
unitary operations here are assumed to be ideal.

As it is possible that more than one photon can enter the
same port in this method, the results may not be acceptable
when there are insufficient on/off detectors. However, when
there are sufficient on/off detectors, the probability of this sit-
uation is lower, and the detection results can then approach

those of the ideal case. Here, we proposed a method using the
fidelity and relative entropy to characterize the performance of
the detectors. The photon counting formulae could be deduced
based on multiple on/off detector arrays considering both the
quantum efficiency and dark counts. Using these formulae, we
took six typical quantum states as examples to study the num-
ber of detectors that can be used to obtain an ideal result as
well as the effects arising from the noise counts.

signal

detector array

unknown quantum state

Fig. 1. (color online) Schematic of multiphoton detections based on an
on/off detector array. An unknown quantum state is equally divided into
N ports by a series of hypothetical unitary operations (U(N)). At the end
of each port, an on/off detector is ready for the detection of a possible in-
coming photon. The photon number distribution is obtained by summing
the clicks of all the on/off detectors.

2. Photon counting formulae based on on-off de-
tectors
In the method based on the on/off detector arrays, the

photon-counting formula of the quantum state |ψ〉 can be writ-
ten as[22]

pk(ψ) = Tr[ρ̂ψ Π̂k(N)], (1)

where ρ̂ψ is the density operator of the quantum state |ψ〉, N
is the number of on/off detectors, and

Π̂k(N) = : Ck
N exp[−(η n̂+Nυ)/N](N−k)

×{I− exp[−(η n̂+Nυ)/N]}k : (2)
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is the projection operator.[21] Here, η is the quantum effi-
ciency, υ is the dark counts, and : : is the normal ordering
prescription. By combining Eqs. (1) and (2), we can obtain the
detection probability when k detectors click (see Appendix A)

pk(ψ) =
∞

∑
l=0

Ql(ψ,η)Ml(N,k,v), (3)

where

Ql(ψ,η) =
∞

∑
n=0

Cl
n(1−η)n−l

η
l〈n|ρψ |n〉, (3a)

Ml(N,k,v) =
∞

∑
m=0

vm

m!
· exp(−Nv)N−lS(m+ l,k)Pk

N . (3b)

Here, S(m+ l,k) is the Stirling number of the second kind,[23]

Cl
l+n is the binomial coefficient, and Pk

N = N(N− 1) · · ·(N−
k + 1) is the permutation coefficient. As only the term
Ql(ψ,η) contains the information of quantum states and
Ml(N,k,υ) is only the normalization coefficients, we can write
Ql(ψ,η) in the form of different quantum states depending on
their unique expressions as follows.

For the Fock state |n〉,

Ql(ψ,η) =Cl
n(1−η)n−l

η
l . (4)

For the thermal state,

ρth = ∑
n
(1− e−x)e−nx|n〉〈n|,

Ql(ψ,η) =
(n̄η)l

(1+ n̄η)l+1 . (5)

For the squeezed-vacuum state,

|ξ 〉= 1√
coshξ

∞

∑
m=0

(
tanhξ

2

)m √(2m)!
m!

|2m〉,

Ql(ψ,η) = APl(ix)(−iy)l , (6)

where Pl(z) is the Legendre function,[24] A = [cosh2
ξ − (1−

η)2 sinh2
ξ ]−1/2, x = A(1−η)sinhξ , and y = Aη sinhξ (see

Appendix B). For a coherent state |α〉 = exp(αa+−α∗a)|0〉,
the photon counting probability pk can be written as

pk(α) = Ck
N exp[−(η |α|2 +Nv)/N](N−k)

×{I− exp[−(η |α|2 +Nv)/N]}k. (7)

For a coherent superposition state |ψ〉 = M(|α〉+ exp(iϕ)|−
α〉), where |α〉 is a coherent state, the photon counting proba-
bility pk can be written as

pk(ψ) = 2|M|2(〈α|Π̂k(N)|α〉+ cos(ϕ)〈−α|Π̂k(N)|α〉). (8)

According to the above formulae, we calculated the pho-
ton number distribution for each state based on 4, 16, 64, and
256 on/off detectors respectively, and the results are shown in
Fig. 2, which verify what we will illustrate in the last section.

3. System similarity and fidelity
To compare the simulated photon number distributions

with the ideal ones, we introduced a computable parameter,
fidelity,[25] which is expressed as

F = ∑
k

√
pk p′k, (9)

where p′k is the probability of the ideal photon number distri-
bution and pk is the probability we calculated above. Equa-
tion (9) can also be understood as the similarity of two clas-
sical probability distributions. Assuming all detectors are per-
fect, we first calculated the fidelities of six quantum states with
different numbers of on/off detectors, and the results are pre-
sented in Fig. 3(a). It can be clearly observed that as the num-
ber of detectors increases, the fidelity tends to be unity. For
squeeze states, their photon number has a higher probability
of 1 or 2, and the fidelity is fluctuant when less detectors are
used.

Figure 3(b) shows the variation of the fidelity as a func-
tion of quantum efficiency for the six quantum states. We find
that with the quantum efficiency increasing, the fidelities of
all the quantum states increase. In particular, the fidelities of
the coherent and thermal states, which are close to the ideal
states, change slowly, while the fidelities of the other four
states change sharply.

This phenomenon is mainly due to the original photon
number distributions of these quantum states. States that have
non-continuous distributions, such as Fock, squeeze-vacuum,
and odd coherent states, have intervals in their photon num-
ber distributions. After being detected by the on/off detec-
tors, higher photon number distributions will partly transfer
to lower ones. Therefore, the probability of the original pho-
ton number states is lower, while that of the adjacent photon
number states is higher, resulting in a sharp change in fidelity.
On the contrary, for states that have a continuous distribution,
both the higher and lower photon number distributions will
partly transfer to a lower photon number distribution. As a re-
sult, each photon number state will change by a small amount.
In other words, the corresponding fidelity will change slowly.
The processes are illustrated in Fig. 4.

Figure 3(c) shows the variation of the fidelity as a func-
tion of dark counts. We find that all fidelities decrease as the
dark counts increase except for the thermal state. Since dark
counts are generated from thermal noise, it can compensate
the same loss of photon counts due to finite detectors.

Figure 3(d) shows the variation of the fidelities of the
Fock states as a function of the mean photon number and the
number of detectors for ν = 500 s−1×10 ns = 5×10−6 (dark
count v is the product of a single photon counter’s response
time and dark counts per second) and η = 0.9. These pa-
rameters can easily be obtained in experiments. Besides the
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Fig. 2. (color online) Six quantum states with a mean photon number of 3 detected by on/off detector arrays. Photon number distributions of (a) coherent,
(b) thermal, (c) Fock, (d) squeeze-vacuum, (e) even coherent, and (f) odd coherent states with N = 4, 16, 64, and 256, respectively.

information we obtained in Fig. 3(a), we also find that all fi-
delities decrease as the mean photon number increases. This
phenomenon is mainly due to the higher probability for more
than one photon entering in the same port.

4. System diversity and relative entropy

In thermodynamics,[26] entropy is often used to charac-

terize the degree of disorder of a system. In quantum systems,
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Fig. 3. Six quantum states with a mean photon number of 3 detected by on/off detector arrays. (a) Calculated fidelities of each state based on perfect on/off
detector arrays. (b) and (c) Calculated fidelities of each state based on 16 on/off detectors with finite quantum efficiency and dark counts. (d) Calculated
fidelities of Fock state based on imperfect on/off detector arrays for ν = 5×10−6 and η = 0.9.
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Fig. 4. Photon number distributions of both ideal and simulated ones for
(a) and (b) calculated squeeze-vacuum state, (c) and (d) calculated coher-
ent state.

we can also use relative entropy to describe photon number
distributions, which can be written as

E =
N

∑
k=0

p′k log2
p′k
pk

. (10)

Information entropy[27] is known to indicate the degree of or-
dering of a system.

It is quite different from the fidelity in the sense that the
more ordered a system is, the higher the information entropy
will be. Therefore, the relative entropy[28] can describe the
distance between two probability distributions in some degree,

which, in other words, can also be interpreted as the system di-
versity. A lower relative entropy here indicates that the simu-
lated photon number distributions are approaching to the ideal
distribution, in contrast to the fidelities. Figure 5(a) plots the
calculated relative entropy of the six quantum states as a func-
tion of the number of on/off detectors. Like the fidelity, the
relative entropy can also be used to distinguish between the
photon number distributions simulated from the on/off detec-
tor array and the ideal distribution. We calculated the relative
entropy with the increasing noise. The results are presented
in Figs. 5(b) and 5(c), which show similar phenomena to the
fidelities we illustrated in Fig. 4. We also calculated the vari-
ation of the relative entropy of the Fock states as a function
of the mean photon number and the number of detectors for
ν = 5×10−6 and η = 0.9, as shown in Fig. 5(d). It shows the
same information which we have obtained in Fig. 3(d). In ad-
dition, the relative entropy can be used not only in quantum in-
formation, but also in classical information. In conclusion, the
relative entropy may be more useful in future photon counting
statistics.

5. Conclusion
We have derived a series of universal photon counting for-

mulae for six common quantum states based on multiple on/off
detectors. The formulae can be applied to obtain ideal and
simulated photon number distributions. We have simulated
the photon number distributions and found that increasing
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Fig. 5. Six quantum states with a mean photon number of 3 detected by on/off detector arrays. (a) Calculated relative entropy for the six states as a function
of detector number. (b) and (c) Calculated relative entropy of each state based on 16 on/off detectors with finite quantum efficiency and dark counts. (d)
Calculated relative entropy of the Fock state based on imperfect on/off detector arrays for ν = 5×10−6 and η = 0.9.

the number of detectors can result in a higher performance in
both perfect and imperfect detections. We then derived and
calculated the fidelity of the simulated photon counting distri-
butions, which can assist us in choosing a suitable number of
detectors to obtain a near-perfect photon number distribution
of each state. We have also derived and calculated the relative
entropy of the obtained photon counting distributions, which
exhibit an opposite tendency to that of the fidelity. We found
that for states with continuous distributions, the detection per-
formance is better than that of the states with non-continuous
distributions. Therefore, we should choose near-perfect detec-
tors for non-continuous state detections, while imperfect de-
tectors are acceptable for continuous state detections.

Appendix A

The photon detection probability equations can be derived
by the following process from Eq. (2):

Π̂k (N)

= : Ck
N exp

[
−(η n̂+Nv)

N

]N−k(
I− exp

[
(η n̂+Nv)

N

])k

:

= : Ck
N exp

[
−(η n̂+Nv)

N

]N

exp
[
−(η n̂+Nv)

N

]−k

×
(

I− exp
[
(η n̂+Nv)

N

])k

:

= : Ck
N exp [−(η n̂+Nv)]

(
exp
[
(η n̂+Nv)

N

]
− I
)k

:

= : Ck
N exp [−(η n̂+Nv)]

k

∑
j=0

C j
k exp

[
j (η n̂+Nv)

N

]
(−1)k− j :

=
k

∑
j=0

Ck
NC j

k (−1)k− j : exp
[
−(η n̂+Nv)

(
1− j

N

)]
:. (A1)

Considering that : exp(−λ n̂) := ∑(1−λ )n|n〉〈n|, where λ =

η(1− j/N), we obtain

Π̂k(N) =
∞

∑
n=0

Ck
N

{ k

∑
j=0

C j
k (−1)k− j exp

[
−Nv

(
1− j

N

)]
×
[

1−η

(
1− j

N

)]n}
|n〉〈n| . (A2)

Combining Eqs. (1) and (A2), we have

Pk(ψ) =
∞

∑
n=0

Ck
N

{ k

∑
j=0

C j
k (−1)k− j exp

[
−Nv

(
1− j

N

)]
×
[

1−η

(
1− j

N

)]n}
· |〈n|ψ〉|2

= exp(−Nv)
∞

∑
n=0

k

∑
j=0

Ck
NC j

k (−1)k− j ·
∞

∑
m=0

( jv)m

m!

×
n

∑
l=0

Cl
n (1−η)n−l

(
η j
N

)l

|〈n|ψ〉|2

=
∞

∑
n=0

n

∑
l=0

Cl
n (1−η)n−l

η
l |〈n|ψ〉|2

∞

∑
m=0

vm

m!
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× exp(−Nv)N−lCk
N ·

k

∑
j=0

C j
k (−1)k− j jm+l . (A3)

Considering that

S(m+ l, l) =
1
k!

k

∑
j=0

C j
k(−1)k− j jm+l ,

we obtain

Pk(ψ) =
∞

∑
l=0

∞

∑
n=l

Cl
n(1−η)n−l

η
l |〈n|ψ〉|2

∞

∑
m=0

vm

m!

× exp(−Nv)N−lS(m+ l, l)Pk
N . (A4)

Next, we normalize the equation by the ∑Pk(ψ) = 1 relation.
First, by using the ∑S(n, l)Pk

m = mn relationship, we ob-
tain

N

∑
k=0

Ml (N,k,v) =
∞

∑
m=0

vm

m!
exp(−Nv)

N

∑
k=0

N−lS (m+ l, l)Pk
N

=
∞

∑
m=0

(Nv)m

m!
exp(−Nv)

= 1. (A5)

Combining Eqs. (A4) and (A5), we obtain

N

∑
k=0

Pk(ψ) =
∞

∑
l=0

∞

∑
n=l

Cl
n (1−η)n−l

η
l |〈n|ψ〉|2

=
∞

∑
n=0

n

∑
l=0

Cl
n (1−η)n−l

η
l |〈n|ψ〉|2

=
∞

∑
n=0
|〈n|ψ〉|2

= 1. (A6)

Appendix B
The photon detection probability equations of the

squeezed-vacuum states can be derived in the following pro-
cess. By substituting the squeezed-vacuum wave function into
Eqs. (3(a)) and (3), we obtain

Pk (ξ ) = Ck
N

k

∑
j=0

C j
k (−1)k− j exp [−v(1− j/N)]

·
{

ch2
ξ − [1−η (1− j/N)]2 sinh2

ξ

}−1/2
. (B1)

The last term is{
cosh2

ξ −
[

1−η

(
1− j

N

)]2

sinh2
ξ

}−1/2

= A

{
1−2xy

(
j

N

)
− y2

(
j

N

)2
}−1/2

= A
∞

∑
l=0

Pl (ix)(−iy)l ( j/N)l , (B2)

where the terms A, x, and y are defined in the main text.
Similar to Appendix A, we obtain

Pk(ξ ) = A
∞

∑
l=0

Pl(ix)(−iy)l

·
∞

∑
m=0

1
m!

vm exp(−v)
1

Nl+m S(l +m,k)Pk
N . (B3)
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