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Abstract: We propose a pattern-search-like algorithm to design an aperiodic optical phased 
array for extensive applications in light detection and ranging and free-space communication. 
The designed phased array with 128 isotropic elements achieves a scan range, peak side-lobe 
level, minimum beam width, and mean pitch of ± 82°, –14.34 dB, 0.062°, and 9.75 μm, 
respectively. To our knowledge, it has the widest steering range, narrowest divergence, and 
largest mean pitch for the same waveguide number. The minimum pitch can be greater than 
2.67λ to avoid cross-coupling. The calculated relationship between the machine error and 
side-lobe level indicates that the designed structure has a higher error tolerance than its 
uniformly spaced counterpart. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Dynamic optical beam steering can create a three-dimensional map of the environment 
because the distance to a point can be measured by collecting optically reflected light. A 
sufficiently narrow beam is almost impossible to intercept when used as a data carrier in free-
space communication. Hence, technologies for efficient optical beam shaping and steering 
have found ubiquitous applications in light detection and ranging, secure free-space 
communications, and others [1–6]. Devices used to implement these functions are composed 
of massive optical and mechanical parts, which are bulky and expensive with a slow response 
and high temperature sensitivity [7]. With the development of photonic integrated circuits 
based on silicon technology, hundreds or even thousands of elements can be integrated on a 
single chip. Optical systems made by this type of technology often have a small volume, high 
stability, and low cost. The inherent flexibility of a chip-scale optical phased array (OPA) for 
electronically steering a beam has made it suitable for mounting on wearables, autonomous 
vehicles, and drones in the near future. 

An OPA consists of a set of coherent emitters. On controlling the phase of the emitted 
laser, the beam will interfere at a specific angle in the far field. Some OPAs with uniform 
spacing have recently been reported [8–18]. For a uniformly spaced OPA, interference is 
produced not only in the main beam direction but also in the other directions, which are called 
grating lobes. The uniform structure has a tradeoff between the beam width (BW) and scan 
angle to prevent grating lobes from appearing in the scanning area. Although a method to 
achieve subwavelength spacing which can effectively suppress grating lobes in the whole 
scanning process has been proposed [19, 20], the individual phase control on every 
waveguide will be lost and the thermal crosstalk between waveguides will be challenging 
when using this method. Several studies have shown that in nonuniform-spacing array 
antennas, the grating lobes are effectively suppressed without affecting the BW at the expense 
of power in the side lobes [21–25]. For such a scanning beam, the goal is to suppress the side-
lobe level, especially the peak side-lobe level (PSLL), reduce the BW, and increase the power 
in the main lobe. Each of these provides a great boost in performance compared to a 
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uniformly spaced OPA. However, few reports have covered the nonuniformly spaced OPA 
[26–29]. The best experimental result, to the best of our knowledge, was reported in 2016 by 
Intel [28], in which 128 waveguides were integrated in a whole circuit. A resolution of over 
500 points in the steering direction was realized because of the 80° scanning angle and 0.14° 
beam divergence. In another theoretical design reported in 2017 [29], a 192-element OPA 
with a mean pitch of 3λ demonstrated the ability to suppress grating lobes in the entire visible 
spectrum. Nevertheless, as argued in [1, 14], there is still room for improvement to meet the 
requirements of practical applications. 

The iterative search algorithm, genetic algorithm, and particle swarm optimization 
algorithm are conventional algorithms used to design aperiodic phased antennas and OPAs 
[21–29]. In these algorithms, reiteration is required when the emitter number demand 
changes. The initial population size, crossover probability, and mutation probability affect the 
ultimate outcome.  

In this work, we propose a pattern search algorithm to address this complex nonlinear 
optimization design problem. We consider an OPA with 128 isotropic elements as an 
example, demonstrating a scan region, PSLL, minimum BW, and mean pitch of ± 82°, –14.34 
dB, 0.062°, and 9.75 μm, respectively. The grating lobes are effectively suppressed in the 
whole scanned area. The structure we designed is a universal structure that can be applied to 
silicon-on-insulators, silicon nitride, and many other materials. Furthermore, considering that 
the refractive index and pitch could deviate from expectations, the far-field pattern of the 
array is controlled by the phase of the excitation of currents as well as the skew. We analyze 
the influence of machine error on the performance of the far-field pattern and show that the 
performance of the designed OPA is hardly affected when the deviations of refractive index 
and pitch are reasonable. 

 

Fig. 1. (a) Layout of a uniformly spaced OPA. The main components usually include a laser, 
multi-mode interference, and phase shifter. (b) Far-field pattern of the uniformly spaced OPA. 

2. Uniformly Spaced OPA 
The near-field, Fresnel, and Fraunhofer regions are identified based on the distance from the 
emitters, and the attractive region for the beam scan device is the Fraunhofer region, which 
we often call the far-field region. A type of uniformly spaced OPA and far-field pattern are 
presented in Figs. 1(a) and 1(b), respectively. For a uniformly spaced OPA, multi-mode 
interference is used to split the light from an on-chip or off-chip laser into multiple 
waveguides with independent electronically controlled phased modulators. By changing the 
phase of these coherent beams, the emitted light constructively interferes in the far field. The 
interference is produced not only in the main beam direction but also in the other directions, 
which we call grating lobes. When the coordinate position (x, y) of an observation point P in 
the far field is variable, the general form of Fraunhofer diffraction, which is also established 
under the large-scan-angle condition, is as follows: 
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where θ is the diffraction angle, k(θ) is the inclination factor, λ is the wavelength, k0 is the 
wave vector and is equal to 2π/λ, and r0 is the distance from the origin on the aperture plane to 
a point P(x, y). U(x0, y0) is the complex amplitude of any point (x0, y0) on the aperture plane. 
In an OPA, each waveguide is equivalent to a slit in the aperture plane. For simplicity, we 
assume that the width of each waveguide is sufficiently small to consider the waveguide as a 
point light source. We also assume y0 = 0 and represent U(x0, y0) as follows: 
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Therefore, the light field at the observation point P can be regarded as the superposition of the 
diffraction field generated by N units at point P and can be expressed as follows: 
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where Ai is the amplitude of the element and sinθ = x/r0. If 0 0sini ik xϕ θ= , the entire light 

beam will propagate in the same direction θ0. For uniform spacing, xi = id, where d is the 
spacing between adjacent waveguides. Compared to the absolute value of the field intensity, 
we are more concerned about the distribution of intensity. The value of k(θ) is only dependent 
on the diffraction angle, and as each unit in the OPA is isotropic, k(θ) can be regarded as a 
constant amplitude term. We can simplify the expression by ignoring the constant terms of 
amplitude and phase. We represent the field intensity as follows: 
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We simulate the BW, scan angle, PSLL, and power in the main lobe as functions of the 
number of waveguides for OPAs with widths of 50, 100, and 150 μm. In all cases, unless 
specified otherwise, the operating wavelength is set to 1.55 μm and the width of each 
waveguide is ignored. The BW ΔθFWHM is related to the wavelength λ, pitch of the emitter 
array d, scan angle θ0, and number of emitters N, and it can be expressed as follows [8]: 
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As shown in Fig. 2(a), the BW increases first and then becomes constant if the chip covers a 
certain area. Increasing the chip width will result in a reduction in BW if the number of 
waveguides is fixed. The scan angle is determined by the grating lobes. When the beam is 
steered in the far field, the main lobe and grating lobe will have almost equal levels at one 
point and will become indistinguishable. The grating lobes occur at [30] 

 0sin sin = .
m

d

λθ θ−  (6) 

where m is the order of the grating lobe. Here, the beam is scanned in the far field, with the 
main lobe equal to the first-stage grating lobe as the standard, and there will be two boundary 
points. The intermediate region of the two boundary points is defined as the scan angle, which 
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is 2arcsin(0.5λ/d), as shown in Fig. 2(b). When the spacing between the waveguides is less 
than half the wavelength, the scan angle increases because of the invariant chip width and 
increased number of waveguides. In order to prevent the occurrence of grating lobes between 
± 90°, the number of waveguides should exceed 65, 130, and 194 for OPAs with widths of 
50, 100, and 150 μm, respectively. Furthermore, we can infer from Eq. (6) that the limitation 
on the grating lobes is d < λ when the beam is undirected. To meet this limitation, the number 
of waveguides should exceed 33, 65, and 97 for OPAs with widths of 50, 100, and 150 μm, 
respectively. This phenomenon is reflected in the hop of the PSLL, which can be observed in 
Fig. 2(c). The hopping point is the node when grating lobes start to disappear. The PSLL 
before this node is zero. According to the change in the above properties, it is easy to 
associate to the change in power in the main lobe. The power ratio in the main lobe can be 
obtained by calculating the power in the main lobe divided by the total power of the scan 
beam. The result is not a monotonous curve and can be seen in Fig. 2(d). As the number of 
waveguides increases for a fixed chip width, the number of grating lobes will decrease when 
the pitch is divisible by the wavelength, and the power in the main lobe will increase quickly 
and then gradually decrease because of the limbic movement of the grating lobe. Again, for 
an OPA with a different width, when the pitch is smaller than the wavelength, the grating lobe 
will disappear and the power in the main lobe will become stable. 

 

Fig. 2. Calculated properties of the far-field pattern of a uniformly spaced OPA when the 
element factor is not considered; the operating wavelength is set to 1.55 μm. For a fixed chip 
width, increasing the number of waveguides will decrease the pitch. (a) BW, (b) scan angle, (c) 
PSLL, and (d) power in the main lobe as functions of the number of waveguides for uniformly 
spaced OPAs with widths of 50, 100, and 150 μm. 

From the above analysis, omnidirectional beam steering appears possible with the use of a 
150-μm-wide OPA having 194 waveguides or other configurations in which the pitch is 
smaller than half the wavelength. However, in addition to the above factors, it is necessary to 
consider whether the spacing of adjacent waveguides would cause uncontrollable crosstalk. In 
order to obtain the expected radiation pattern, both an individual thermal tuner and 
appropriate phase control scheme are needed. If the pitch is too small, on-chip coupling 
remains a serious problem, although a few workarounds have been proposed to suppress the 
performance degradation. At this time, the complex individual electric control system and 
phase control scheme will both become meaningless. Overall, changing the emitter pitch of a 
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uniformly spaced OPA will offer some performance gains at the cost of some degradation in 
other factors. Apparently, uniformly spaced assignment is not the optimal route. 

3. Aperiodic OPA 
One feasible and effective approach to improving the performance of the beam is an aperiodic 
arrangement of elements. The iterative search algorithm, genetic algorithm, and particle 
swarm optimization algorithm have been used to design aperiodic OPAs [21–29]. The 
essence of these methods is the continuous iteration of the population, and the results depend 
on the complex setting of the initial parameters. Here, we propose a new pattern search 
method to design aperiodic arrays. We use the cosine similarity between the target 
distribution and practical distribution to assess the scanning beam. The cosine similarity is 
applied to compute the similarity of a chromatogram or sentences by building a vector space 
model [31, 32]. The magnitude of the cosine similarity is calculated by the cosine of the angle 
between two non-zero vectors of an inner-product space. In positive space, the outcome is 
bounded between 0 and 1. A value of 1 indicates that the two vectors have the same 
orientation with a strong correlation. A smaller value implies a weaker correlation. The cosine 
similarity can be calculated as follows: 
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where f(n) denotes the function of the actual pattern, g(n) denotes the target function, and n 
denotes the number of sampling points of the function. For an aperiodic phased array, the 
simplified formula by ignoring the constant term can be expressed as 
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where xi is the position of each waveguide. By changing xi, the ideal f(n) can be selected by 
calculating the cosine similarity between f(n) and g(n). The details of the algorithm are as 
follows. 

3.1. Beamforming 

In the design, it is necessary to select a target function with the appropriate shape. The ideal 
scanning signal is characterized by a low PSLL, small BW, and large main-lobe power ratio. 
We define the delta function as the target function, and it can be seen from the shape that the 
power of the signal is concentrated in the main lobe. Ultimately, the task consists of the 
computation of the cosine similarity between two vectors representing the target function and 
objective function, respectively. The arrangement of each emitter of an OPA with non-
uniform spacing is designed in the following stages. 

Stage 1: Initialization 
To run, we first set the preferences, including the minimum pitch requirement dmin, search 

region wstep, search accuracy p, target function, first waveguide coordinate y1, and non-empty 
array m that contains 1, 2, 3, …, wstep/p. We set the origin of the coordinates as the position of 
the first emitter, the delta function as the target function, and 1 nm as the search accuracy in 
the whole study. 

Stage 2: Pattern search and calculation 
The emitter is placed at the position yn = yn–1 + dmin + mp. As m is an array containing the 

number of points in the search region, it consists of integers between 1 and wstep/p, which 
implies that we have multiple positions to choose from. We calculate the cosine similarity 
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between the actual radiation pattern and delta function when the emitter is located in these 
positions. The position with the maximum value of the cosine similarity will be selected to 
determine the next action. 

Stage 3: Estimation 
For further estimation, we need to determine whether the point with the largest cosine 

similarity occurs at the time when m reaches its maximum. In this situation, it is possible to 
achieve a better performance if we continue to gradually expand the search area, for example, 
to 2wstep. By extension, if this phenomenon still appears, the search area will be expanded to 
3wstep, and the search area will be expanded further until the edge point is no longer the best 
option, and the final position will be recorded. 

Different values of the minimum pitch requirement and search region are considered to 
attain a better strategy. The cosine similarity for the case in which the search scope is equal to 
one minimum pitch requirement is shown in Fig. 3(a) for minimum pitch requirements equal 
to 2, 3, and 4 μm. The 4-μm case can provide a higher cosine similarity in the whole search 
process compared to the 2-μm and 3-μm cases. Even so, it is not desirable to increase the 
beam quality by steadily increasing the minimum pitch requirement. With the increase in the 
minimum pitch requirement, the steepness of the cosine similarity rise curve decreases, and 
the improvement in the far-field pattern will become less distinct. To enhance the efficiency 
of the algorithm, after setting the minimum pitch requirement to 4 μm, we change the value of 
the search range to two and three times the minimum pitch requirement, and the results are 
presented in Fig. 3(b). When the search area is set to twice the minimum pitch requirement, 
the cosine similarity curve shows a significant improvement. However, when the search area 
is three times the minimum pitch requirement, the upward trend of the cosine similarity starts 
to become relatively smooth. The increase in the search area also increases the number of 
search points, occupies more computer memory, and extends the running time; therefore, it is 
reasonable to set the search region to three times the minimum pitch requirement. 

 

Fig. 3. (a) Cosine similarity between the delta function and actual far-field pattern as a function 
of the number of waveguides when the search area is equal to the minimum pitch requirement. 
The minimum pitch requirement is set to 2, 3, and 4 μm. (b) Cosine similarity between the 
delta function and actual far-field pattern as a function of the number of waveguides when the 
minimum pitch requirement is equal to 4 μm and the search area is set to one, two, and three 
times the minimum pitch requirement. (c) BW, (d) PSLL, and (e) power of the 128-element 
OPA designed by the proposed method as functions of the minimum pitch requirement when 
the search area is thrice the minimum pitch requirement. 
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The cosine similarity is a measure of the similarity between the far-field beam and ideal 
waveform, and it is a comprehensive evaluation index. In order to see more detail, we 
calculated the BW, PSLL, and power in the main lobe of the far-field beam when the search 
area is three times the minimum pitch requirement. The minimum pitch requirement changes 
between 3 and 10 μm in increments of 0.5 μm. The properties of a uniformly spaced OPA are 
also calculated for comparison with the non-uniform-spacing layout. 

In comparison with the uniform-spacing OPA, the OPA with non-uniform spacing 
improves the BW and the main-lobe power ratio in the majority of cases, as can be seen from 
Figs. 3(c) and 3(e). The significant improvement in the non-uniform configuration is reflected 
in the PSLL, as can be seen from Fig. 3(d). The aperiodic OPA clearly improves the PSLL 
because it avoids the interference of the beam in the direction of the non-main lobe. For 
uniform-spacing OPA, the PSLL is 0 dB, which indicates that the beam is invalid. Therefore, 
although the increase in the BW and main-lobe power ratio is limited, the nonuniform spacing 
arrangement is of considerable importance because the beam is valid only at nonuniform 
spacing intervals when the minimum pitch requirement ranges from 3 to 10. From the 
discussion above, the decrease in beam divergence is at the cost of the main-lobe power. In 
order to be closer to the ideal beam, the selection of the search scheme should take into 
account all the above indicators; therefore, we set the minimum pitch requirement to 4 μm 
and the search scope to thrice the minimum pitch requirement to search for a better beam. 

Fig. 4. Search results with a minimum pitch requirement of 4 μm and search scope of 12 μm. 
(a) Contrast of the placement method of aperiodic and uniform OPA. (b) Difference between
the pitch of the designed aperiodic OPA and uniform OPA. Illustrative far-field pattern for (c)
16-element, (d) 32-element, and (e) 64-element aperiodic OPA. See Visualization 1 for a video
showing the details of the beamforming process of the designed 128-element aperiodic OPA. 

The design arrangement based on the proposed algorithm with a minimum pitch 
requirement of 4 μm and search scope of 12 μm is presented in Fig. 4(a) by a blue line that 
marks the coordinates of the emitters, which are numbered from 1 to 128. The line should be 
linear if the pitches are all identical. It can be confirmed that the waveguides have non-equal 
spacings by comparison with the method of uniform placement in the same length, which is 
represented by the red line; the two curves do not overlap, and the blue line is non-linear. The 
difference between the pitches of the uniform and aperiodic 128-element OPA is shown in 
Fig. 4(b). The aperiodic OPA has 128 isotropic elements with an overall length of 1239 μm 
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and mean pitch of 9.75 μm, which is more than 6.2 times larger than the wavelength. The 
minimum pitch is 4.15 μm and the maximum pitch is 15.77 μm. Assuming that each pitch is 
sufficiently large, the mutual coupling effects with the array is close to zero. If we wish to 
design a phased array with fewer waveguide roots, we need not run the algorithm again, 
because the results obtained by this algorithm are consistent with the same initial-parameter 
setting. 

In order to verify the effectiveness of the designed configuration, we apply this method to 
construct OPAs with different numbers of waveguides. See Supplementary Visualization 1 
for more details about the PSLL and BW of these OPAs. The far-field patterns of the OPAs 
with 32, 64, and 128 channels are shown in Figs. 4(c)–4(e), respectively. Because the 
minimum pitch requirement is set to 4 μm for these three OPAs, each spacing between 
adjacent waveguides is greater than or equal to 4 μm. For the uniformly spaced phased array, 
grating lobes will occur and become indistinguishable from the main lobe because each 
spacing is greater than the wavelength. However, the demonstrated aperiodic OPAs are 
effective in avoiding the occurrence of grating lobes. The main lobe required for scanning and 
the side lobe are completely distinguishable, and the beam quality is dramatically improved. 
The PSLL values of OPAs with 16, 32, and 64 elements are –6.59, –8.52, and –11.99 dB, 
respectively, and the BW values of OPAs with 16, 32, and 64 elements are 0.49°, 0.25°, and 
0.12°, respectively. In terms of beamforming, increasing the number of emitters will provide 
a better beam, but it will inevitably increase the cost and complexity of the circuit. Further 
optimization simulations are performed for the practical application of the 128-element array. 

 

Fig. 5. Beam scanning with a uniform and non-uniform phased array consisting of 128 
waveguides with an operation wavelength of 1.55 μm without considering the width of the 
waveguide. Visualization 2 shows a schematic of the scanning of the uniformly spaced and 
aperiodic OPAs in polar coordinates for an intuitive comparison. (a) Far-field pattern along θ 
for uniform emitter pitches when θ0 = 0° and 5°. (b) Far-field pattern along θ for non-uniform 
emitter pitches when θ0 = –82°, –60°, –40°, –20°, 0°, 20°, 40°, 60°, and 82°. (c) BW, (d) 
PSLL, and (e) power in the main lobe as a function of scan angle for the non-uniformly spaced 
OPA. 
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3.2. Beam steering 

 

Fig. 6. Original beam and varied beam with different limits of phase errors of each waveguide. 
The inset shows the feature of the main lobe. (a) No-machine-error condition. The original 
beam has a BW of 0.062°, PSLL of –14.34 dB, and main-lobe power ratio of 0.054. (b) Far-
field pattern when the range of phase errors is [–0.3π, 0.3π], (c) [–0.6π, 0.6π], and (d) [–π, π]. 

By changing the phase of each emitted light beam, the optical path difference between 
adjacent waveguides will change, and the beam can be scanned in the far field. For a better 
comparison, we present the far-field pattern of the uniformly spaced OPA when θ0 = 0° and 
5° in Fig. 5(a). At a wavelength of 1.55 μm, the far-field pattern of the uniformly spaced OPA 
without any thermal phase shifting is represented by the red line. The main lobe is at 0° and 
the grating lobes are at increments of approximately 9°. By changing the phase difference 
between waveguides, the beam will be steered in the θ direction. Without considering the 
element factor, the main lobe and grating lobes of the non-steering beam and steering beam 
will have the same level. Even if we consider the element factor, the beam will be steered in a 
very limited area. The non-steering beam of the uniformly spaced OPA has a beam 
divergence of 0.064° and main-lobe power ratio of 0.045. From Fig. 5(b), we can conclude 
that the beam of the aperiodic OPA can be steered further. To make the contrast even more 
remarkable, Visualization 2 shows a schematic of the scanning process of the uniform and 
aperiodic OPA in polar coordinates. Here, the measurement indicates that the beam has a 
divergence of 0.062°, side-mode suppression of 14.34 dB, and main-lobe power ratio of 
0.054. The simulation results verify that the beam could achieve scan control from –82° to 
82°. The solid line in the different color represents the illustrative far-field pattern at nine 
specific angles (0°, ± 20°, ± 40°, ± 60°, and ± 82°). Figures 5(c), 5(d), and 5(e) show the BW, 
PSLL, and power in the main lobe, respectively, as functions of the scan angle for the non-
uniformly spaced OPA. It can be found that the three variables are symmetric about the zero-
phase position. During the whole scanning process, the mean BW is 0.12°. However, as we 
can see from Fig. 5(c), the BW increases rapidly near both ends of the steering angle range; 
therefore, to make sure the BW does not exceed 0.10° during the whole process, the scanning 
range should be narrowed to ± 50.52°. The best PSLL, BW, and power in the main lobe are –
14.34 dB, 0.062°, and 0.269, respectively, while the worst values are –10.99 dB, 0.448°, and 
0.042, respectively. 
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4. Manufacturing Error 

4.1. Phase error 

Ideally, the arrangement of waveguides should be in accordance with the rules, and the arrays 
should be consistent; therefore, each waveguide core should have the same refractive index. 
However, there are many errors in the actual processing. In particular, it is difficult to ensure 
absolute uniformity in the width and height of each waveguide. Thus, the effective index of 
waveguides is difficult to be made constant, and the far-field pattern will deviate from the 
expectation. The phase shift caused by unpredictable machine errors is not beneficial for 
beam scanning [33–35]. The deviation of the effective refractive index or emitter pitch can be 
summed up as the phase difference between neighboring waveguides. We assume that the 
error is completely random, and Δφ is used to express the phase error of each waveguide. In 
other words, the problem is treated by assuming that all emitters have the same amplitude and 
only have the phase error. The phase errors are uniform and independently distributed in [–
Δφmax, Δφmax]. 

We add phase errors to the beam of the designed aperiodic 128-element OPA. The 
original beam and three representative cases are shown in Fig. 6, where the inset shows the 
feature of the main lobe. The original beam is shown in Fig. 6(a). The effect of machine error 
on the quality of the scanning beam can be categorized into several situations. In the first 
situation, the principal maximum is in the primary main-lobe interval. The main lobe exhibits 
little change, as shown in Fig. 6(b), and the phase errors vary in the range of [–0.3π, 0.3π]. 
The side-lobe level increases slightly compared to the original beam, and the main lobe will 
narrow or widen. Figure 6(b) shows the narrowing situation. Then, the main lobe may distort 
when the errors take some special value and the principal maximum is still in the expected 
range, as shown in Fig. 6(c). The phase errors vary in the range of [–0.6π, 0.6π]. According to 
the evidence, the scanning beam is still effective in these cases even though the side-lobe 
level increases continuously. With the increase in phase errors, the beam will become 
unusable, which is indicated by the fact that the direction of the maximum value of the beam 
is out of the primary main-lobe interval, as shown in Fig. 6(d), and the phase errors vary in 
the range of [–π, π]. The relative power in the main lobe is relatively small, as shown in the 
inset, which implies that the main lobe has lost scanning function. 

The far-field pattern of the array when considering phase errors can be represented as 
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We can further estimate the performance of the beam by calculating the expectation and 
variance of the field intensity. As Δφ is independent and identically distributed, the 
expectation of the field intensity E{Ue(θ)} can be given by 
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In the case of a given expectation, we can calculate the variance. The variance of the field 
intensity σ2{Ue(θ)} can be expressed as 
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In order to estimate the PSLL of the beam when the phase errors are considered, Chebyshev’s 
inequality can be used: 

 ( )
2

2
P 1 ,x

σμ ε
ε

− < > −  (12) 

where x is the value that needs to be predicted and μ and σ2 are the expectation and variance 
of x, respectively. This inequality indicates that the probability of the occurrence of random 
events |x–μ| < 2σ is greater than 75%, the probability of |x–μ| < 3σ is greater than 88.89%, and 
so on. When we consider the phase errors, the PSLL is regarded as an estimated value, which 
is equal to x in Eq. (12). We use p to represent the PSLL and make ε = ξσ; therefore, we can 
obtain the following formula from Chebyshev’s inequality: 
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In order to calculate E{p}, the field intensity will be normalized. We assume that the position 
of the first-stage side lobe is represented by θ1. Then, E{p} becomes 
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When |E{Ue}| reaches its maximum, θ = θ0, |E{Ue}|max becomes 
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We can infer from Eq. (10) and Eq. (15) that after the field intensity is normalized, the 
expectation of the phase error will be eliminated. Then, we obtain 
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We can further infer ξσ{p} from Eq. (11) as 
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Here, we define η as 
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We set ξ to 3, 4, and 5; in theory, the probability of the PSLL in these forecast ranges 
calculated by Eq. (13) is greater than 88.89%, 93.75%, and 96%, respectively. To verify the 
result calculated from Chebyshev’s inequality, we measured the PSLL when the random 
phase error ranges from [–0.01π, 0.01π] to [–π, π]. For each scope, we took a hundred sets for 
the calculation. The theoretical range and simulation results are presented in Fig. 7. 

 

Fig. 7. Theoretical upper and lower bounds of the PSLL and the simulation result for the 
designed aperiodic 128-element OPA when considering the phase error. The values of ξ are 3, 
4, and 5, respectively, which implies that the probability of the actual PSLL being in the 
forecast range is greater than 88.89%, 93.75%, and 96%, respectively. The simulation for each 
scope is conducted one hundred times. Error bars are specified by the maximum, minimum, 
and mean value of the PSLL. 

The statistical properties of the PSLL are highly repeatable. The probability of the PSLL 
being in the forecast range is 99.12%, 99.98%, and 100%, which are clearly greater than 
88.89%, 93.75%, and 96%, respectively. The above results indicate that the phase error will 
change the PSLL. We notice that the PSLL generated by the simulation is 100% below the 
theoretical limit when ξ is equal to 5. This limit is considered an insurance standard. 
Therefore, if we wish to ensure that the PSLL of the designed 128-element aperiodic OPA is 
not greater than –10 dB, the phase errors should be in the range of [–0.14π, 0.14π]; if we wish 
to ensure that this beam can be steered in the far field, the phase errors should be in the range 
of [–0.61π, 0.61π]. 

Meanwhile, from Eq. (17), we can conclude that the change in the PSLL is unrelated to 
the arrangement of waveguides but is related to the maximum of the phase errors and the 
number of waveguides. Thus, the prediction of the PSLL is independent of whether the OPA 
is aperiodic. Compared to the lower limit, we are more concerned with the upper limit of the 
PSLL. When ξ = 5, the estimated upper limit of the PSLL is calculated with different initial 
PSLLs. The prediction result is presented in Fig. 8. The PSLL always increases with the 
maximum of the phase errors when the initial PSLL is fixed. We can conclude that an OPA 
with a better PSLL will exhibit a higher error tolerance. As required in some applications 
[28], in order to guarantee a PSLL less than –10 dB, the maximum phase error should be less 
than 0.25 π for a –20 dB beam, and for a –40 dB beam, the limit of the maximum phase error 
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should be expanded to 0.33 π. To ensure the beam can be scanned effectively in the far field, 
the PSLL should not exceed 0 dB. For the –20, –10, and –5 dB beams, the limits of the 
maximum phase error are 0.64π, 0.57π, and 0.43π, respectively. More information can be 
obtained from Fig. 8, and these results can serve as a useful reference for engineering 
applications. In practical application, we often correct phase error by means of thermal phase 
adjustment. 

 

Fig. 8. Estimated value of the PSLL of the 128-element OPA when the initial value of the 
PSLL is known and the phase errors are considered. 

4.2. Amplitude error 

In the actual production process, although phase error is the main source of error, the 
nonuniformity in the emission intensity cannot be ignored. Similarly, Chebyshev’s inequality 
can be used to estimate the PSLL of the beam when the amplitude errors are considered. The 
field intensity of the array when considering amplitude errors can be represented by 

 ( ) ( ) [ ]{ }
1

max 0 0
0

1- exp (sin sin ) .
N

a i i
i

U A A j k xθ θ θ
−

=

= Δ −  (19) 

Where ΔAi is the ratio of amplitude attenuation on each waveguide and can be considered as 
independent and identically distributed, Amax is the ideal amplitude in the error free state. 
Amplitude error ratios vary in the range of [0 ΔAi]. The expectation of the field intensity 
E{Ua(θ)} can be given by 
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The variance of the field intensity σ2{Ua(θ)} can be given by 
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We use pa to represent the PSLL when amplitude errors are considered. The position of the 
first-stage side lobe is represented by θ2. Then, E{pa} becomes 
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E{pa} is equal to the PSLL without amplitude errors. We can further infer ξσ{pa} from Eq. 
(21) as follows 
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When amplitude errors exist, we use Chebyshev’s inequality and set ξ to 3, 4, and 5 to 
calculate the upper and lower bounds of the PSLL. meanwhile, we measured PSLL when ΔAi 
ranges from 0 to 0.3 in increments of 0.005. For each scope, we took a hundred sets for 
calculation. The theoretical range and simulation results are shown in Fig. 9. 

 

Fig. 9. Theoretical upper and lower bounds of the PSLL and the simulation result for the 
designed aperiodic 128-element OPA when considering the amplitude error. The values of ξ 
are 3, 4, and 5, respectively. The simulation for each scope is conducted one hundred times. 
Error bars are specified by the maximum, minimum, and mean value of the PSLL. 

The probability of the PSLL being in the forecast range is 99.98%, 100%, and 100%, 
which are clearly greater than 88.89%, 93.75%, and 96%. The PSLL generated by the 
simulation was 100% in the theoretical range when ξ is equal to 4. We can conclude that the 
existence of amplitude errors worsened PSLL in some cases, while in others they have 
improved PSLL. If attenuator can be used to precisely control the light intensity in each 
waveguide, some uneven intensity distribution schemes are beneficial for PSLL. The 
drawback of this kind of scheme is the loss of power. 

When ξ is 4, the deterioration of PSLL is shown in Fig. 10. Amplitude errors are not as 
significant for PSLL deterioration. When ΔAi is 0.1, the PSLL of the beam with initial PSLL 
of −5, −10, and −20 dB become −4.87, −9.88, and −19.11 dB; When ΔAi is 0.2, the PSLL of 
the beam with initial PSLL of −5, −10, and −20 dB become −4.69, −9.56, and −18.22 dB; 
When ΔAi is 0.3, the PSLL of the beam with initial PSLL of −5, −10, and −20 dB become 
−4.49, −9.22, and −17.33 dB. 

                                                                                              Vol. 26, No. 15 | 23 Jul 2018 | OPTICS EXPRESS 19167 



Fig. 10. Estimated value of the PSLL of the 128-element OPA when the initial value of the 
PSLL is known and the amplitude errors are considered. 

5. Conclusions
We proposed a pattern search algorithm to design a 128-channel aperiodic OPA with 
independently phase-tuned channels for beam steering. This chip can suppress grating lobes 
throughout the scan and is demonstrated to achieve free-space beam steering across ± 82° 
with a minimum BW of 0.062°. Furthermore, the average spacing between the waveguides is 
9.75 μm, and the minimum spacing is 4.15 μm; consequently, cross-coupling can be 
completely suppressed. Furthermore, when considering the phase error and the amplitude 
error generated during the processing, the upper limit of the PSLL can be estimated by 
Chebyshev’s inequality. We measured the PSLL when the phase errors are added. The 
simulation agrees well with the theoretical calculation. Therefore, Chebyshev’s inequality is 
effective for estimating the PSLL. For the 128-element OPA, to ensure the beam can be 
steered effectively in the far field, the maximum phase error limits are 0.64π, 0.57π, and 
0.43π respectively for –20, –10, and –5 dB beams irrespective of whether the arrangement of 
the OPA is uniform or aperiodic. Meanwhile, the amplitude error does not aggravate PSLL as 
much as the phase error. When the maximum amplitude error ratio is 0.3, the deterioration of 
PSLL does not exceed 1 dB. These results are expected to serve as a useful reference for 
engineering applications. 
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