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Abstract: We propose a novel coupled resonator optical waveguide 
(CROW) structure that is made up of a waveguide loop. We theoretically 
investigate the forbidden band and conduction band conditions in an infinite 
periodic lattice. We also discuss the reflection- and transmission- spectra, 
group delay in finite periodic structures. Light has a larger group delay at 
the band edge in a periodic structure. The flat band pass filter and flat-top 
group delay can be realized in a non-periodic structure. Scattering matrix 
method is used to calculate the effects of waveguide loss on the optical 
characteristics of these structures. We also introduce a tunable coupling 
loop waveguide to compensate for the fabrication variations since the 
coupling coefficient of the directional coupler in the loop waveguide is a 
critical factor in determining the characteristics of a loop CROW. The loop 
CROW structure is suitable for a wide range of applications such as band 
pass filters, high Q microcavity, and optical buffers and so on. 

©2014 Optical Society of America 
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1. Introduction 

The dispersion relation of photons in periodic index distribution media exhibits band 
structures similar to that of electrons in crystals [1]. The periodic index distribution media 
introduce important phenomena and applications, such as ultra-small bend waveguides [2], 
filters [3], lasers [4], fibers [5], slow light [6], and so on. The reflection at the interface of 
different index materials in such periodic structures attributes to the constructive and 
destructive interference of photons. Other than optical reflection due to refractive index 
difference, the interference can also be realized by optical coupling effect. Microring based 
coupled-resonator optical waveguides (CROW) is an example of depicting such photonic 
band structures [7]. Utilizing thermal effect and carrier’s dispersion effect to tune the resonant 
wavelength, CROW can be used in applications such as optical switches and modulators [8], 
storing light [9], optical delay line [10] and optical buffers [11]. 

In this paper, we propose a novel CROW structure whereby the periodic element structure 
is made of an optical waveguide loop. Unlike micro-ring based CROWs, the optical 
waveguide loops are made of a single connected waveguide which is more compact and has 
easier reconfiguration control than microring CROWs [12]. For better understanding of the 
characteristics of loop-CROW (L-CROWs), we theoretically investigated the dispersion 
relation of band structure in infinite lattices, the transmissivity, reflectivity and time delay 
characteristics in finite lattices. 

This paper is organized as follows: in section 2, we discussed the optical band structure in 
perfect infinite L-CROWs using Broche theorem. Following this, we discussed the reflection 
and transmission, light phase change and group delay characteristics. Non-periodic loop 
lattice characteristics namely flat-top optical filter, cavity trapping light and group delay were 
investigated in section 3. We also analyzed the effects of optical loss using scattering matrix 
method is section 4. Finally, we introduced tunable coupled loop element in section 5 and 
concluded this paper in section 6. 

2. Modeling of periodic L-CROW 

Optical dispersion relation is an important characteristic for many applications. Dispersion 
relation of a periodic lattice can be illustrated as a photonic band structure. In this section, we 
focus on L-CROW with perfect lattice and analyzed their dispersion relation, reflectivity, 
transmissivity, and group delay time. 

2.1 Infinite lattice – photonic band gap structure 

Here we investigate an infinite nanowire L-CROW which is shown in Fig. 1(a). The CROW 
is a periodic structure where the repeat element is a loop waveguide, shown in Fig. 1(b). The 
light travels in four different paths, illustrated by dotted lines in Fig. 1(b). The reflectivity and 
transmissivity of the element are described in Eq. (1), 
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Where φDC is the angle of directional coupler. Every L-CROW element introduces reflection 
and transmission. Therefore the periodic loop lattice shows similar behavior to a photonic 
crystal. 

 

Fig. 1. (a) Sketch map of a L-CROW with a repeat element of a waveguide loop structure. (b) 
Loop element. Light is coupled from the left hand side, and four paths are shown by the dotted 
line. The left dotted line depicts the reflected light path, and the right dotted line depicts the 
transmitted light path. 

According to Broche theorem, the wave function of a periodic structure can be described 
as a periodic function times a planar wave. Employing Eq. (2), we can get this relation as 
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Where, T is a 2 × 2 transmission matrix and described as 
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Where, θ is the light phase change for the lattice. It can be described as θ = lk0neff. l is the 
length of a lattice, k0 is the wave vector in vacuum and neff is the effective index of the 
waveguide. It is evident that 1=T . Similar to planar photonic crystals [13], the eigenvalues 

Λ ±  are given by Eq. (5). The two eigenvalues are reciprocal to each other. If the term in the 
square root of Eq. (5) is positive, i.e. Equation (6) is satisfied, the two eigenvalues are two 
points on an unit circle, and can be written as Λ ±  = exp( ± iϑ), the ϑ is argument of Λ+. This 
leads to the derivation of Eq. (7). 
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Conduction states exists when ϑ is a real number. Assuming that the directional coupler is 
independent of wavelength, we can get Eq. (8) from Eq. (6), 

 [ ] [ ]2 2DC DCN Nπ ϕ θ π ϕ− > > +  (8) 
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Where, [2φDC] is angle 2 DCϕ in principal value interval of [-π/2, π/2], as illustrated in Fig. 2. 
The red dashed line is cos2(2φDC). Areas below the dashed line satisfy the condition for 
conduction states (Eq. (6)). The conduction bands are denoted by grey colored regions in Fig. 
2, while the forbidden regions are located between the conduction regions. The coupling 
strength of the directional coupler determines the width of conduction and forbidden bands. 
One extreme case is cos2(2φDC) = 1, forbidden band does not exist, and conduction band 
exists across the entire spectrum. This corresponds to t = 0 or 1, the right two dashed loops 
figures in Fig. 1(b) become bent waveguides or crossed waveguides. Another extreme case is 
cos2(2φDC) = 0, the conduction band does not exist, and the forbidden bands exists across the 
entire spectrum. This corresponds to t2 = κ2 = 1/2. In this case, the directional coupler is a 3-
dB power splitter. From Eq. (1), we can see te = 0, every element loop are full reflector. From 
Eq. (8) we can get the conduction band width are 2 [ ]2 DCϕ . This means that we can tune the 

band gap by changing the coupling coefficients of the directional couplers. 

 
Fig. 2. Illustration of band structure. The grey regions denote the conduction bands while the 
white colors regions denote the forbidden bands. 

2.2 Finite lattice – transmission and reflection 

In the previous section, we discussed about the band structure of an infinite loop lattice. 
However, a more practical structure is a finite lattice. We again apply Eq. (3), the 
transmission relation of Nth loop are 
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With 1=T , the TN is described by Eq. (10) [14]. 
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Where UN = sin[(N + 1)ϑ]/sinϑ is the second kind of Chebyshev polynomials. And matrix I is 
2 × 2 unit matrix. Therefore transmissivity and reflectivity are given as 
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For the lossless situation, i.e. 
2 2

1N Nt r+ = , we can get relation of 

 

2

2 2

2,1 1

2 2

2 2,1 1

2 2

2,1 1

1

1

1

N

N

N

N

N

t
T U

T U
r

T U

−

−

−

 = +

 = +

 (12) 

#216897 - $15.00 USD Received 14 Jul 2014; revised 14 Aug 2014; accepted 5 Sep 2014; published 25 Sep 2014
(C) 2014 OSA 6 October 2014 | Vol. 22,  No. 20 | DOI:10.1364/OE.22.024202 | OPTICS EXPRESS  24205



Figures 3(a) and 3(b) show the reflection and transmission spectrum with different lattice 
numbers. For N = 1, resonance does not exist across the entire spectrum (see the blue line in 
Figs. 3(a) and 3(b)). As the lattice number increases, the light oscillates between the loops, 
leading to the formation of the conduction- and forbidden- bands. In the conduction bands, 
the reflectivity and transmissivity spectrum show oscillation shape. And the oscillation 
number (zero points of |rn|

2) is 2N-2 in 2π region. For N→∞, it can treat as a half infinite 
lattice and we can get the envelope of this spectrum that is described in Eq. (13). The 
transmissivity value of any infinite lattice is between 1 and |tenv|

2 while the reflectivity value 
of any infinite lattice is between |renv|

2 and 0. |tenv|
2 and |renv|

2 are the envelope values of 
transmissivity and reflectivity respectively. These values are dependent on either T2,1 or the 
coupling coefficients of the directional coupler. 

 

Fig. 3. (a) Reflectivity spectrum with different lattice numbers. (b) Transmissivity spectrum 
with different lattice numbers. Black dashed lines are infinite lattice. Reflection phase and 
differential term vs. detune oscillation phase with different lattice numbers. (c) and (d) are 
reflectivity and transmissivity phases. (e) and (f) are phase and differential term, respectively. 
(f) is averaged by loop lattice number. t = 0.1. The evolutions of real- and imaginary- part with 
optical phase detune (see Media 1) gives a better understanding of the reflection and 
transmission’s amplitude and phase variation. 
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Where, ϑre = real(ϑ). 
Phase is an important interferometer parameter. From Eq. (11), the reflection and 

transmission phases, Φr and Φt has a relationship as follows 

 r tΦ = ΔΦ + Φ  (14) 

Where, Φt is a function of θ described as 
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Where TN = cos(Nϑ) is the first kind of Chebyshev polynomials. And phase difference ΔΦ is 
described as 
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Obviously, ΔΦ is an oscillating function. It varies between the two values of ± π/2. In 
other words, the reflection phase changes with a π step at UN-1 = 0, or rN = 0. 

Phases of reflectivity and transmissivity with different loop lattice numbers are shown in 
Figs. 3(c) and 3(d). According to Eqs. (14) and (16), the transmissivity phase is a gradual 
smooth moving curve. In the conduction band, the reflectivity phase shows a π step change at 
rN = 0. But in the forbidden band, the phase curve is smooth. For better understanding of this 
phenomenon, we make a small movie (Media 1) to show the relationships of real- and 
imaginary- part of reflectivity and transmissivity with optical phase detune. For reflection, the 
tracks are always tangent to the y-axis at the coordinate origin point. But for transmission, the 
tracks are circulating around the coordinate origin point. Therefore, the transmission phase is 
continually increased. 

In the forbidden band, the reflectivity and transmissivity phase is a linear line at N = 1 and 
changes to a nonlinear profile with N>1. The group delay τ is described in Eq. (17). 

 r r
c

d d
T

d d
τ

ω θ
Φ Φ

= − = −  (17) 

Where ω is angular frequency of light, and Tc = l/υg is the time of light through a lattice. υg is 
group velocity of light in the waveguide. Equation (17) describes that Tc is a scale of time, 
second differential term dФr/dθ is an amplification ratio. Since Tc is fixed, the delay time τ is 
determined by dФr/dθ. Figures 3(e) and 3(f) show dФr/dθ with different lattice numbers. For 
simple comparison, transmissivity group delay is averaged by lattice number. For a small 
amount of loops, the group delay shows flatness. In the conduction band, the delay time curve 
shows ripple and some singular points. Since the reflection phase has a step increase of π at 
zero reflectivity, the differential term becomes δ function at that point. The δ function 
happens since the waveguide loss is assumed to be absent in the calculation. We will include 
the optical loss in section 4. At the forbidden center, phases detune Δθ→0, from Eq. (15), the 
differential term becomes Eq. (18), and in a infinite lattice, it becomes Eq. (19). Apparently, 
if sin(2φDC) tends to the value of 0, cos2(2φDC) tends to the value of 1, the light has a larger 
group delay. This case corresponds to a narrow forbidden band as shown in Fig. 2. The t and 
κ are close to 0 or 1. The loop element is a waveguide with lower reflectivity. The light must 
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be reflected through a large number of loop lattices. However, at forbidden band edge, the 
group delay can increase tremendously. See Eq. (7), the forbidden band edge, cosϑ =  ± 1, or 
ϑ = Mπ, leads to Eq. (20). The delay time has an almost linear relation with the number of 
lattice, especially at large number of N. Figure 4 shows the relationship of the group delay 
time vs. reflectivity/transmissivity. The number of lattice is fixed at 16 and t = 0.1. The 
arrows in Fig. 4 indicate the largest group delay that occurs near the edge of the forbidden 
band (see Figs. 3(e) and 3(f)). Large group delay is a result of light oscillation between 
lattices. In the conduction band, majority of the light is in the transmitted direction; minority 
of light is in the reflected direction. In the case of the forbidden band, this phenomenon is 
contrary. This means the light is non-equilibrium for two directions in both of bands. But 
there is close to equilibrium of the light at the edge of the bands. This results in strong light 
oscillation and thereby a large group delay. 
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Fig. 4. Relation of delay time with reflectivity. Blue and red color curves denote reflection and 
transmission respectively. 

3. Modeling of non-periodic L-CROW 

In the previous sections, we had discussed perfect periodic L-CROW. Now we will discuss 
non-periodic L-CROW. Non-periodic loop lattice will change the spectra of transmission and 
reflection significantly. In this section, we will investigate flat top band pass filter and L-
CROW microcavity. Flat top band pass filter is a key component in signal processing. In fact, 
the forbidden band is applicable in a flat band pass filter as shown in Fig. 3(a). However, the 
side modes oscillations are significant. Adopting non-periodic lattice will increase the side-
mode suppression ratio (SMSR). Non-periodic lattice structure can also be applied in a 
microcavity. It has many applications, such as narrow band pass filter, laser, trapping light, 
time delay and so on. 

3.1 Non-periodic structure – flat top band pass filter 

Practical application is preferred to possess a maximally flat transmission or maximally flat 
group delay. In Fig. 3, the SMSR is small with large difference in group delay around the 
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band edge. This problem can be improved through the synthesis of high-order bandpass filters 
[15]. And this idea can be applied in a loop lattice to realize same functions. However, the 
cross coupling coefficient of loop and microring must satisfy Eq. (21). For instance, taking a 
6 order Butterworth and Bessel filter in [15], the loop’s κloop is listed in Table 1. The 
Butterworth and Bessel filter’s transmission spectra and group delay are shown in Figs. 5(a) 
and 5(b). Butterworth loop filter shows a maximally flat transmission spectrum while Bessel 
loop filter shows a nearly flat group delay. Comparing both κloop, even though there is big 
difference in the transmission spectra, the maximum related difference of κloop of both 
structures is only ~3%. This shows that the L-CROW structure is very sensitive to κloop. 

 ( )1 2loop ringκ κ= +  (21) 

Table 1. Cross coupling coefficients of loop filter 

Filter type κloop

Butterworth (0.962,0.824,0.771,0.762,0.771,0.824,0.962)
Bessel (0.966,0.827,0.749,0.750,0.791,0.851,0.976)

 

Fig. 5. (a) 6 order Butterworth filter, transmission and delay with phase detune. (b) 6 order 
Bessel filter, transmission and delay with phase detune. Blue and red color curve denote 
transmission and delay respectively. 

3.2 Loop cavity 

3.2.1 Two lattices Fabry-Pérot cavity 

 

Fig. 6. Illustrative comparison of loop cavity and ring resonator. (a) Loop cavity and (b) 
Add/drop ring resonator. 

The analogy of a two lattice Fabry-Pérot loop cavity and an add/drop ring resonator are 
illustrated in Fig. 6. In contrast to an add/drop ring resonator, in loop cavity light travels 
through the cavity waveguide (see Fig. 6 dashed region) two times while light travels through 
the cavity waveguide one time in a conventional ring resonator. This is favorable for active 
devices; the tunability efficiency is increased by two times if there is an equal phase change in 
both types of cavities. From Eqs. (4) and (11), the cavity transmission function is derived as 
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shown in Eq. (22). From Eq. (1), imaginary number i will introduce π/2 additional phase shift. 
Therefore, the resonance occurs at odd integers of π which is different from a microring 
resonance that occurs at even integers of π. Figure 7 shows the relationships of transmission 
spectrum with square of self-coupling coefficient t2 and photon phase θ. Therefore we can get 
the relations of Q value with coupling coefficients as (23). When cos2(2φDC) tends to 0, i.e. 
the directional coupler becomes a 3-dB splitter, the Q value is higher and the transmission 
spectrum becomes narrower. 
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Where θ = θloop + θcavity is the sum of the loop phase (that is described in Eq. (1)) and cavity 
phase (additional phase of cavity). θ is half of phase change whereby the light travels one 
round in cavity. Transmission is maximum at θ = π/2. 
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Fig. 7. Transmission spectrum of two loop F-P cavity. 

3.2.2 Defect of L-CROW light trapping 

In a perfect semiconductor, if a different element is implanted into a crystal, it will change the 
crystal characteristics significantly. Similarly in optical field, e.g. phase shift DFB laser, it 
introduces an additional phase shift in the grating. The region of additional phase shift 
becomes a cavity. In a periodic loop lattice, when an additional phase shift is introduced, it 
also becomes a cavity. We name this as defect if that cavity length is very small. A sketch 
map of a defect loop lattice structure is shown in Fig. 8. The left and right hand side of the 
structure are integral lattices. The center of the structure is a region with additional phase 
shift. This additional phase can be introduced by thermo-optical effect, carrier's dispersion 
effect, or a small additional length of passive waveguide. Additional phase is denoted by θc in 
Fig. 8. The loop lattices at both ends of the structure are two equivalent mirrors if light is in 
the forbidden band. Their reflectivity and transmissivity are denoted by rf, tf, rb and tb, 
respectively. They can be described by Eq. (11). 

 

Fig. 8. Schematic of loop lattices with defect. 
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Light oscillates between the two mirrors. an and bn denote the forward waves and 
backward waves respectively. The light energy density can be determined by |an|

2 + |bn|
2. 

Assuming that the amplitude of the incident light is 1, the light energy density of cavity can 
be described by Eq. (24). For the lossless situation, the reflectivity is purely imaginary, and 
transmissivity is purely real (See Eq. (11). This means that the reflection introduces π/2 
additional phase shift. For cavity mode, when light oscillates one round in the cavity, total 
phase change should be integer times of 2π. Therefore, half cavity phase θc = π/2 + Mπ, where 
M is integer, leading to Eq. (25). If rf, and rb are close to 1, the energy density can be very 
high. 
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Fig. 9. Characteristics comparison of entire lattice and with defect lattice. (a), (c) and (e) are 
for entire lattice. (b), (d) and (f) are defect lattice. (a) and (b) shows the transmission spectrum. 
(c) and (d) shows the optical energy distribution in lattice with different phase detune. The 
energy density distribution evolves from one state in (c) to another state in (d) as the phase 
changes from 0 to π/2 (see Media 2). (e) and (f) shows the optical energy distribution at Δθ = 
0. The total loop lattice number is 20, and self coupling coefficient t = 0.1. 
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Figure 9 shows the comparison of a loop lattice without and with a defect. The defect is an 
additional π/2 phase shift waveguide. The phase shift can be realized by inserting a small 
length of waveguide, or by thermal optical effect. The total loop lattice number is fixed at 20, 
with the left and right hand side of the structure each having 10 loops lattice number. Figures 
9(a), 9(c) and 9(e) show the simulation of the lattice without defect, while Figs. 9(b), 9(d) and 
9(f) show the simulation with defect lattice. The defect introduces a transparent state at 
forbidden band center. Figures 9(c) and 9(d) show the light energy density distribution in the 
lattice with different phase detune. Note the difference in the values of the color bar in Figs. 
9(c) and 9(d). For the case of the structure without defect, the light in the forbidden band 
cannot pass through the lattices; instead the light is reflected within the initial few lattices. 
But at the band edge, light can pass through more lattices before finally being reflected (see 
Fig. 9(c)). This explains why the light has a large time delay at the band edge. Figure 9(d) 
shows the defect lattice trapping the light with a very high energy density. The oscillation 
mode energy density distributions in lattice are shown in Figs. 9(e) and 9(f). For perfect 
lattice, the energy decays exponentially as the light passes through each loop lattice. For 
defect lattice, the energy decays exponentially from defect lattice to either ends of the lattice. 
The maximum energy position is at the defect. It is 27 times higher than incident light in this 
example. According to Eqs. (5) and (7), in forbidden band, ϑ is purely imaginary, therefore 
the amplitude decay between adjacent lattice is as exp(-|ϑ|). A small movie (Media 2) shows 
the evolution process of the spectra with cavity phase change. 

 
Fig. 10. Comparison of differential term of with/without defect. Blue curve is without defect. 
Red curve is with defect. 

Once the light is trapped in the cavity, the output light will show a large group delay. 
Figure 10 shows the comparison of group delay with/without defect. The parameters are the 
same as in Fig. 9. The cavity mode has 2.5 times larger group delay than that of a band edge 
mode. With the larger trapping time, or delay time, it enhances the light-matter interaction 
within the defect. This characteristic can be applied in many applications, such as laser, 
modulator, photodetector, sensor, and so on. 

4. Effects of propagation loss – scattering matrix method 

All the above discussions are based on the lossless conditions. However, in reality, there is a 
definite waveguide loss. It comes from materials absorption and waveguide surface 
roughness. Generally, neff is made of two parts, real- and imaginary- part, i.e. neff = nr + ini. 
Phase shift is determined by the real part nr, and loss is determined by the imaginary part ni. 
Therefore, phase θ can be rewritten as θ = k0lneff = θr + iθi. In the lossless case, there is no 
issue using transmission matrix method for the numerical calculation. However, when the loss 
is taken into account, the transmission matrix method is unsuitable because the term exp(-iθ) 
in Eq. (4) may lead to floating number overflow. Scattering matrix method can overcome this 
limitation. The input and output wave's relationship Eq. (3) can be rewritten as 
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Where elements of matrix, re and te are the same as in Eq. (1). S denotes the scattering matrix. 
Figure (11) and Eq. (27) explain how two lattice scattering matrix can be combined into one 
matrix. S(1,2), S(2,3) and S(1,3) are scattering matrix between (a1,b'2)

T and (b1,a'2)
T, (a2,b'3)

T and 

(b2,a'3)
T, (a1,b'3)

T and (b1,a'3)
T respectively. They are described by Eq. (27a). ( )1,2S is the 

scattering matrix between (a1,b2)
T and (b1,a2)

T in Eq. (27b). Where θ2 is the phase shift 
between S(1,2), S(2,3). (a2,b2)

T is translated by a distance from (a'2,b'2)
T. This is important for a 

non-periodic lattice structure. The relationship between ( )1,2S and S(1,2) is described in Eq. 
(27c). Equation (27d) gives the full form of the scattering matrix. Finally, the transmissivity, 

( )1,
2,1

N
Nt S= , and reflectivity, ( )1,

1,1
N

Nr S= . 

 
Fig. 11. Schematic of scattering layers and directions. 
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Figure 12 shows the simulations of reflectivity, phases and group delay with different 
waveguide loss. The loop lattice number is fixed at 16 in this simulation. Self coupling 
coefficient, t, is assumed to be 0.1. The imaginary part of phase changes from 0 to 0.01 in 
steps of 0.002. The reflection spectrum profile is determined by the optical interference. In 
the lossless condition, the reflectivity can be as low as 0 due to complete destructive 
interference. On the other hand, when waveguide loss is taken into account, there is no 
complete destructive interference. As a result, the extinction ratio of the reflection spectrum 
reduces with loss as depicted in Fig. 12(a). 

The phase change of reflectivity is shown in Fig. 12(b). For conductive band and lossless 
situation (blue line), there is a phase change of π when reflectivity is at zero. As discussed in 
section 2.2, this is a singular point for the differential term. However when loss is taken into 
consideration, the curve is smooth and continuous with large negative differential value. The 
group delay is shown in Fig. 12(c) and a zoom in figure of the red dashed box is shown in 
Fig. 12(d). As the loss becomes smaller, the absolute of differential term becomes larger and 
narrower. A movie of (Media 3) illustrates the evolution of the real- and imaginary- part trace 
of reflections and transmissions. Unlike the lossless case, the curve of a substantial loss 
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structure does not pass through the origin exactly. Therefore this makes the phase change 
gradually instead of a step function and the extinction ratio also reduces with loss. 

 
Fig. 12. Reflection spectrum with different absorption. Imaginary parts of phases are chosen as 
0:0.002:0.01. Blue color curve denote lossless case. (a) Reflectivity. (b) Phase of reflectivity. 
(c) Delay time. (d) Zoom in of delay time. Media 3 shows the real- and imaginary- part 
evolution. 

 
Fig. 13. Reflection characteristics comparison with different absorption in defect loop lattice. 
Imaginary parts of the phases are chosen as 0:0.002:0.01. Blue color curve denote the lossless 
case. (a) Reflectivity. (b) Phase of reflectivity. A zoom in of conduction band is inserted. (c) 
Zooming in of conductance band. The phase changing is in 2π range. (d) Zoom in of forbidden 
band. The phase change is in π range. 
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Figure 13 shows the reflectivity spectrum of the defect L-CROW in Fig. 8. The defect 
introduces an additional phase shift of π/2. Figure 13(a) shows the reflectivity with detune 
phase. It is similar to Fig. 12(a), the extinction ratio of the reflectivity reduces with waveguide 
loss. But the phase of the reflectivity is significantly different from the lossless case. The 
maximum phase shift is within π (see Fig. 12(b)) in the conduction band. However, for defect 
structure, the phase shift is within 2π (see Fig. 13(b)). And at the forbidden band center, the 
defect structure will introduce an additional π shift. Zoom in regions of the conduction band 
and forbidden band are shown in Figs. 13(c) and 13(d) respectively. As discussed in section 
2.2, at reflectivity close to zero (conductive band), the phase of reflectivity increases by π. 
But in defect structure, the phase increases by ~2π (see blue line in Fig. 13(c)). The curve is 
smooth and continuous for structure without defect, while the phase changes by a step of π for 
defect structure. 

The transmission spectrum is shown in Fig. 14(a). The zoom in cavity mode is shown in 
Fig. 14(b). The cavity mode is more sensitive to optical loss. Delay time is shown in Fig. 
14(c) and the zoom in region is shown in Fig. 14(d). The delay time reduces with increasing 
waveguide propagation loss. The movie (Media 4) shows the evolution trace of real- and 
imaginary- part for reflections and transitions with θi = 0.002. 

 
Fig. 14. Transmission spectrum with different absorption in defect loop lattice. Imaginary parts 
of phases are chosen as 0:0.002:0.01. Blue color curve denote the lossless case. (a) 
Transmission spectra. (b) Zoom in transmission spectra at oscillation frequency. (c) Delay 
time. (d) Zoom in of delay time. Media 4 shows the real- and imaginary- part with phase 
detune for θi = 0.002. 

5. Tunable loop 

As we had discussed previously, the characteristics of L-CROW are dependent on the 
coupling coefficients and phase of loop. However, it is difficult to get the exact coupling 
coefficient and phase due to fabrication variations. Therefore, we need a tuning function to 
compensate the fabrication discrepancy. Figure 15(b) shows a tunable waveguide phase of 
loop. It can modify the oscillation wavelength. The tuning function can be realized by thermal 
optical effect or carrier’s plasmonic dispersion effect. As we discussed in section 2.1, the 
coupling coefficients determine the band width. One method to control the coupling 
coefficients is by changing the effective index of one waveguide in the directional coupler 
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[16]. Another more effective method is to replace the coupling region by a tunable MZI 
structure (see Fig. 15(c)). Tuning can be realized by thermo-optical effect or carrier 
dispersion effect. The reflectivity and transmissivity of the MZI structure are described as 

 
( )

( )

2 2

2 2

2

2 1

tunable

tunable

r ikt t P P

t kt P P

 = −


= − + −
 (28) 

Where P = exp(iΔθt) + 1, and Δθt is the phase difference between the two MZI arms. rtunable 
and ttunable are functions of re and te as discussed above. Figure 16 shows the reflectivity and 
transmissivity of MZI-loop. Unless self coupling coefficient t is very close to 0 or 1, we can 
tune rtunable and ttunable in full range from 0 to 1. 

 

Fig. 15. Sketch map of tunable loop reflector. (a) A basic loop element. (b) The loop region 
with heater. (c) Directional coupler replaced by MZI. 

 

Fig. 16. Transmission and reflection with the phase difference and self-coupling coefficients. 
(a) Transmission. (b) Reflection. 

6. Conclusion 

We proposed a novel coupled resonator optical waveguide (CROW) structure whereby the 
repeat element is a waveguide loop. We theoretically investigated the forbidden band and 
conduction band conditions in infinite periodic lattices. We also analyzed the reflection- and 
transmission- spectra, group delay time in finite periodic structures. Scattering matrix method 
is used in the calculation of the effects of waveguide loss. We also proposed a tunable 
coupling loop waveguide to compensate for the fabrication variations since the coupling 
efficient is a critical factor in determining the characteristics of loop CROW. The loop 
CROW structure is suitable for a wide range of applications such as band pass filters, high Q 
microcavity, and optical buffers and so on. 
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