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Abstract— We theoretically investigate the relative intensity
noise (RIN) of a silicon hybrid laser by taking into account
two-dimension transverse modes in the hybrid waveguide.
It shows that, when only one transverse mode is excited, RIN
spectrum of the hybrid laser exhibits a larger peak value at a
lower relaxation oscillation (RO) frequency as compared with the
case of a conventional multiple-quantum well (MQW) laser with
the the same active region design and dimension. In contrast,
when two transverse modes are excited, the hybrid laser shows a
lower peak value at a higher RO frequency as compared with the
MQW laser. The effects of waveguide dimensions, e.g., Si ridge
height and III–V ridge width on RIN spectra of the hybrid laser
are also investigated.

Index Terms— Relative intensity noise (RIN), semiconductor
laser, silicon photonics, transverse modes.

I. INTRODUCTION

THE on-going rapid development of microprocessor chips
is facing several challenges, e.g., limited bandwidth,

capacity and heat dissipation. To overcome these challenges,
there are tremendous interests in developing silicon-on-
insulator (SOI) platforms to replace the current electrical inter-
connects and networks with optical counterparts. Although
SOI amplifiers [1], modulators [2], and detectors [2] have
already been demonstrated on SOI platforms, optical lasing
from silicon becomes a bottleneck to fully realize this platform
due to its intrinsic indirect bandgap. Optically pumped Raman
lasers [3], rare-earth doped Si rich oxides lasers [4], etc.
have been demonstrated in silicon, but they could not fully
act as transmitters in the platform because of their restricted
performance and operation conditions. Recently, an electrically
pumped silicon hybrid laser has been demonstrated based
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on wafer-to-wafer bonding techniques [5]. This hybrid laser
is constructed by the integration of III-V epitaxial wafers
on SOI wafers, followed by standard photolithograph and
etching processes to define the device structure. The advan-
tages of large-scale low-cost integration and relaxed alignment
requirements make it a suitable candidate for the platform.
With similar technology and concepts, other devices, e.g.,
racetrack [6], distributed feedback (DFB) [7], mode-locked
silicon hybrid laser [8], [9] and amplifier [10] as well as
detector [11], are also successfully demonstrated.

To be a promising and reliable candidate for the platform,
a hybrid laser with excellent noise performance is highly
desired. As one of the noise sources, relative intensity noise
(RIN) is an important indicator for intensity stability of
devices. A low RIN results in a low error rate in optical data
communication, and the relaxation oscillation (RO) frequency
derived from the RIN spectrum shows an associated theoretical
maximum modulation bandwidth of the device [12]. A lot of
works are devoted to RIN analysis. For instance, the effect of
the number of quantum wells as well as associated differential
gain, etc. on the RIN of multiple-quantum-well (MQW) lasers
has been investigated [13], and a much lower peak value of
RIN below -157dB/Hz has been reported for MQW lasers [14].
Although many efforts were made on the study of intrinsic
frequency response of MQW lasers, there is no detailed study
of such dynamics or experimental report in the new-developed
silicon hybrid lasers.

In the hybrid laser, two waveguides are put together closely:
one is the III-V region which provides the gain, and the
other is the SOI region which transmits light to subsequent
devices in the platform. Therefore, its cavity mode profile
has to be described in two-dimension transverse plane. As far
as we know, the waveguide dimension can strongly influence
the coupled mode profile in hybrid lasers. This hybrid mode
characteristic is different from that in conventional MQW
lasers. Since it is reported that the mode distribution has a great
influence on the RIN of a laser in MQW lasers [15], a hybrid
laser is predicted to have a different RIN characteristic from
the conventional MQW laser. Therefore, a study on RIN in
hybrid lasers including two-dimension profiles is necessary.

In this manuscript, we extend the RIN calculation model
by incorporating two-dimension transverse profiles and inves-
tigate on the RIN of a hybrid laser, for the first time,
to theoretically show its intrinsic frequency response. The
manuscript is organized as follows: in section II we simulate
the optical mode in our considered cavity of hybrid lasers.
And then, in section III, we present a theoretical model for the
RIN analysis by considering two-dimension transverse modes.

0018-9197 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. The optical field distributions of the TE00 (a) and TE10 (b) mode of
a hybrid laser with a 4μm-wide III-V ridge, a 1μm-wide and 500 nm-high
Si ridge with arrows indicating the silicon-on-insulator (SOI) structure. BOX
in (b) refers to buried oxide.

In section IV, both steady state and small signal modulation
scenarios are analyzed. In section V, the RIN spectra of hybrid
lasers are compared in terms of different dimensions e.g., III-V
ridge widths and Si ridge heights. The comparison between a
hybrid laser and a MQW laser is also discussed. Finally, we
summarize the result.

II. TRANSVERSE MODE IN HYBRID LASER

Silicon hybrid laser is a coupled waveguide structure, which
comprises vertically a top active III-V waveguide providing
the optical gain, and an underneath passive SOI waveguide
transmitting light to other components on SOI. The SOI
waveguide consists of Si ridge, buried oxide (BOX) layer
and Si substrate. BOX thickness is fixed at 2 μm to prevent
the coupling of light into Si substrate. When the III-V and
SOI waveguides are designed to be evanescently coupled with
homogenous width, a higher confinement in SOI will lead to
a higher threshold current density due to a lower confinement
in III-V active region. Although taper design could be used to
improve the threshold performance [16], it is beyond the scope
of this manuscript and only evanescent coupling is considered
in our computation.

Typical TE00 mode and TE10 even supermode [17] are
shown in Fig. 1 with a relatively large confinement in active
region. The III-V material structure consists of an InAlGaAs-
based MQW sandwiched by asymmetric InP cladding layers to
couple more light into SOI waveguide, with reference to [5].
It is found that the TE10 mode has a larger confinement in
active region than that of the TE00 mode due to no lateral
carrier confinement in the III-V ridge. In the following model,
we will investigate the effects of these two modes on the RIN.
We assume uniform current injection over the entire III-V
ridge without injection carrier confinement within the ridge.
Current leakage from sidewalls is also ignored as the optical
profile is independent on it. In addition, under some certain
dimensions, TE10 mode will be excited first due to larger
confinement in active region and moderate mode loss as
compared to TE00 mode. To avoid this, the confinement in
active region for the TE00 mode is maintained above 6% by
controlling the hybrid laser structure in our calculation to
ensure that the TE00 mode will be excited first. It is noted
that the TE10 mode cannot be coupled into SOI, thus could
not transmit into subsequent devices in the circuit. In the below
discussion, we only focus on the RIN of the TE00 mode.

III. TWO-DIMENSION SPATIAL-TEMPORAL MODEL

The model extended in this manuscript includes both spatial
dependence of the carrier and the optical field profile, hence
the electric field can be expressed as

E(x, y, t) = 1

2

∑

i

ϕi (x, y)Ei(t)e
−iωi t + cc. (1)

where Ei (x, y), ψi (x, y) and ωi are the complex field ampli-
tude, optical field profile, and angular velocity of the ith
transverse mode, respectively, and cc. refers to the complex
conjugate of the first term. In this manuscript, we consider
DFB silicon hybrid laser at 1.55μm with a normal ridge-air
facet. Only up to the first two transverse modes are excited
and ψi (x, y) is obtained from two-dimension simulations.

The time evolution of the carrier distribution within III-V
ridge can be expressed as [15]

δNi (x, y, t)

δt
= Dn∇2

r Ni (x, y, t)− Ni (x, y, t)

τn

+ j

ed
−
∑

j

vgτi

dψ j (x, y)
2ψ

2
j (x, y)g j (t)Pj (t) (2)

where Ni (x, y), Dn , τn , vg , τi , j , d , g j , Pj are carrier density
profile associated with i th mode, electron diffusion constant,
electron lifetime, group velocity, i th mode confinement factor
in active region, injection current density, total quantum wells
thickness (including barriers), jth mode gain and the number
of photons in jth mode, respectively.
ψ j (x, y)

2
is the jth mode average optical profile and can

be written as

ψ j (x, y)
2 =

∫ L1

0

∫ L2

0
ψ2

j (x, y)dxdy (3)

where L1, L2 are III-V ridge height and width, respectively.
The rate equation for the photon number can be expressed

as

d Pi (t)

dt
=

[
vgτi gi(t)− 1

τp,i

]
Pi (t)+ dβ

∫ L1
0

∫ L2
0 Ni (x, y, t)dxdy

τn

+
√

dβ
∫ L1

0

∫ L2
0 Ni (x, y, t)dxdy

τn
ξi (t) (4)

where τp,i , β are ith mode photon lifetime, and spontaneous
emission factor, respectively. The last term in (4) represents
the noise component and ξi (t) is a real Gaussian noise term of
zero mean, whose time correlation is given as <ξi (t)ξ j (s)>=
2δi j δ(t − s) [15]. In addition, there is a relationship between
the carrier density and the gain as

gi (t) =

L1∫

0

L2∫

0
ψ2

i (x, y)A[Ni (x, y, t)− N0]dxdy

ψi (x, y)
2 (5)

where A is the differential gain and N0 is transparent carrier
density. Here we assume the laser is operated under normal
condition where there is no gain saturation.
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Ni (x, y) = 4
∞∑

m=1

∞∑

n=1

∫ L1

0

∫ L2

0

sin

(
mπ

L1
x

)
sin

(
nπ

L2
y

) sin
(

mπ
L1

x ′
)

sin
(

nπ
L2

y ′
)

Dn L1 L2

[
−

(
mπ
L1

)2 −
(

nπ
L2

)2 − 1
Dnτn

]

×
⎛

⎝− j

ed
+

∑

j

vgτi

dψ j (x, y)
2 ϕ

2
j (x

′, y ′)goj Pj

⎞

⎠ dx ′dy ′

(6)

IV. STEADY STATE AND SMALL SIGNAL ANALYSIS

For intensity noise investigation, the above rate equations
could be expanded around the steady state values for small
signal analysis. Using the boundary condition that N(0, y) =
N(L2, y) = N(x, 0) = N(x, L1) = 0, the steady state carrier
density Ni (x, y) can be solved by setting (2) and (4) to be
equal to zero as (6) where goj is jth mode steady state gain
and can be solved from the steady state of (4) (ignore second
term which is very close to zero and noise average is zero)
that

goj = 1

vgτ jτp, j
(7)

Then (6) and (7) are substituted into (5) thus ith mode power
could be solved. For the TE00 mode,

a11 P1 = b1 (8)

where a11, b1 are expressed as
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If both TE00 and TE10 modes exist simultaneously, then we
have

a11 P1 + a12 P2 = b1 (9a)

a21 P1 + a22 P2 = b2 (9b)

where ai j , b2 are (i = 1,2; j = 1,2)
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In the above equations, m and n are odd numbers for b1
and b2, respectively.

The typical L-I curves of a hybrid laser are shown in
Fig. 2, where L-I curves in III-V waveguide are also given
(see Fig. 2b). Since TE10 mode cannot be coupled into SOI
waveguide, we only have interests in TE00 mode for a hybrid
laser. Although the TE10 mode is not coupled into the SOI
waveguide, it will affect the RIN characteristics of the TE00
mode once it is excited. Noted that the calculated power, in
linear regime, of the TE00 mode coupled into SOI waveguide
and the threshold current density are slightly higher than exper-
imental values reported in [7]. The small discrepancy is caused
by uncertainties in the parameters chosen for calculations.
In addition, there is a kink in the calculated L-I curve of the
TE00 mode due to the existence of mode competition when
the TE10 mode is excited.

For small signal analysis, time dependent terms are
expanded around steady state values as

Pi (t) = Pi +
Pi (t) (10a)

Ni (x, y, t) = Ni (x, y)+ δNi (x, y, t) (10b)
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Fig. 2. The LI curves for a silicon hybrid laser (a) The LI curves in SOI
waveguide where TE10 mode will not be coupled. (b) The LI curves in III-V
waveguide where TE00 mode is excited first. The typical parameters used are:
L1 = 2.196μm, D = 1cm2/s, A = 3.4 × 10−16cm2, N0 = 8 × 1017cm−3,
vg = 0.75 × 1010cm/s, τn = 2ns, τp,1 = 2.7ps, τp,2 = 2.5ps, β = 2 × 10−5

taken from [13], [15].


gi(t) = A
∫ L1

0

∫ L2
0 ∂Ni (x, y, t)ψ2

i (x, y)dxdy

ψi (x, y)
2 (10c)

Therefore when (10) is substituted into (2) and (4), we
obtain (neglect the second order perturbation terms and the
diffusion perturbation)

∂δNi (x, y, t)

∂ t
= −δNi (x, y, t)
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If both sides of (11) multiply Aψ2
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/
ψi (x, y)

2
and

integrate over the entire III-V ridge, we obtain
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Similarly, for the TE00 mode,

d
P1(t)
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= c1
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d
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If both TE00 and TE10 modes exist simultaneously, we obtain

d
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d
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where c2, d2, ei j , fi j are (i = 1,2; j = 1,2)
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where δi j is Kronecker delta function.
Therefore, by solving (14) or (15), the RIN spectra could

be obtained.

V. RESULTS AND DISCUSSION

Once (14) and (15) are transformed into the frequency
domain, 
P1(ω) and 
P2(ω) could be solved (the pertur-
bation of diffusion is ignored). As defined in [18], RIN for
the TE00 mode of a hybrid laser, is defined as

RI N1 = 2
〈
|
P1(w)|2

〉
/P1

2
(16)

where <·> refers to the mean values. For all calculations, Si
ridge width is fixed at 1μm.

Figure 3 shows the RIN spectra of a hybrid laser at different
injection currents, where the III-V ridge width is 3μm and
the height of Si ridge is 220 nm. At 1.05Jth, where Jth is
the threshold current density, the laser only operates at the
TE00 mode, while, under 1.4Jth and 1.8Jth, the TE10 mode is
excited. The frequency at peak of RIN spectrum corresponds
to RO frequency, which is related to the theoretical largest
modulation bandwidth [12]. At 1.05Jth, the hybrid laser oscil-
lates only at one RO frequency; but as two modes are excited,
two RO frequencies appear, as shown in Fig. 3. Moreover,
with the increase of the current, the RO frequency becomes
blueshifted and the peak value of RIN decreases.
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Fig. 3. The RIN spectra for hybrid laser with a 3μm III-V ridge width,
220 nm Si ridge height under different injection current density: (a) Injection
current density is 1.05Jth; (b) Injection current density is 1.4Jth; (c) Injection
current density is 1.8Jth.

Fig. 4. The RIN spectra for hybrid laser with the same 3μm III-V width,
different SOI height under two injection current density levels: (a) Injection
current density is 1.05Jth, Si ridge height 220nm; (b) Injection current density
is 1.4Jth, Si ridge height 220nm; (c) Injection current density is 1.05Jth, Si
ridge height 340nm; (d) Injection current density is 1.4Jth, Si ridge height
340nm; (e) Injection current density is 1.05Jth, Si ridge height 500nm;
(f) Injection current density is 1.4Jth, Si ridge height 500nm.

The confinement of cavity mode in active region will follow
the variation of Si ridge height. The effect of Si ridge height
on the RIN is shown in Fig. 4. It can be seen that when only
the TE00 mode is excited at 1.05Jth, as the Si ridge height
increases, the RO frequency is redshifted and the peak value of
RIN increases. However, when both TE00 and TE10 modes are
excited at 1.4Jth, as the Si ridge height increases, RO frequency
is blueshifted and the peak value of RIN decreases. Moreover,
one of the peaks is gradually suppressed. It could be attributed
to the variation of cavity mode profile in the hybrid laser.
As shown in Fig. 1, a part of TE00 mode excited in the III-V
waveguide couples into the SOI and the maximum intensity in
III-V waveguide is located at the center of ridge. However, for
the TE10 mode, the confinement in SOI is very small and the
maximum intensity in III-V is located away from the center of

Fig. 5. The RIN spectra for hybrid laser with same SOI height 340nm,
different III-V width under two injection current density levels: (a) Injection
current density is 1.05Jth, 3μm III-V width; (b) Injection current density is
1.4Jth, 3μm III-V width; (c) Injection current density is 1.05Jth, 4μm III-V
width; (d) Injection current density is 1.4Jth, 4μm III-V width; (e) Injection
current density is 1.05Jth, 5μm III-V width; (f) Injection current density is
1.4Jth, 5μm III-V width; (g) Injection current density is 1.05Jth, 6μm III-V
width; (h) Injection current density is 1.4Jth, 6μm III-V width.

ridge. Therefore, the overlap of cavity modes TE00 and TE10
is low so as to induce a low RIN at low frequency range [15].
As Si ridge height increases, confinement of TE00 mode in
SOI is even higher and the mode overlap of the TE00 and
TE10 modes is further reduced. Therefore, the first peak at
low frequency range is further suppressed.

The III-V ridge dimension design can also influence the
mode distributions in hybrid lasers hence the RIN, as shown
in Fig. 5. As the III-V ridge width increases, if only TE00 mode
is excited, the RO frequency is redshifted and the peak value of
RIN increases. However, when both TE00 and TE10 modes are
excited, the RO frequency is firstly blueshifted then redshifted
and the peak value firstly decreases then increases. It shows us
that, in our calculation, a 4μm width design has the highest RO
frequency and the minimum peak value of RIN. This indicates
a theoretically optimum III-V ridge width for the maximum
modulation bandwidth and the lowest RIN with fixed 340nm
Si ridge height. It is noted that for a fixed Si ridge height of
220nm, the RIN shows the same characteristic by changing the
III-V ridge widths. These characteristics could be attributed to
the ratio of confinement in active region to ridge area (ridge
width × cavity length). It is experimentally found that it is
not the confinement in quantum wells for conventional MQW
lasers but the ratio of confinement to ridge area [13] which
determines the RO frequency: the larger the ratio, the higher
the frequency. In our calculations, as the III-V ridge width
increases, the ratio first increases then decreases; therefore,
the peak of RIN shows an optimum value. In addition, the
first peak of the RIN spectrum is gradually suppressed as the
III-V ridge width increases due to the lower and lower overlap
of the TE00 and TE10 modes.

We will close our analysis by comparing the RIN spectrum
of a hybrid laser with that of a conventional MQW laser with
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Fig. 6. Comparison of the RIN spectra for a hybrid laser (a) (c) (e) and diode
laser (b) (d) (f) with same ridge width of 4μm, under different injection current
densities: Injection current density is 1.05Jth (first row); Injection current
density is 1.4Jth (second row); Injection current density is 1.8Jth (third row).

same epitaxial structures, as shown in Fig. 6. The III-V ridge
widths for both lasers are 4μm and Si ridge in the hybrid laser
is 340 nm high. When only TE00 mode is excited at 1.05Jth,
the RIN spectrum of the hybrid laser shows a larger peak value
and a lower RO frequency than those of the MQW laser, which
is due to the lower confinement in active regions in hybrid laser
[19]. In contrast, when both TE00 and TE10 modes are excited,
the first peak at RO frequency is clearly observed for the MQW
laser, while the hybrid laser shows a nearly disappeared peak
at the RO frequency, because the mode overlap between the
two modes is very small in the hybrid laser. Furthermore, the
second RO frequency of the MQW laser is lower than that of
the hybrid laser. Our simulation result, as shown in Fig. 6(b),
on the RIN for conventional MQW lasers can match well
with the experimental values [20]. In addition, the simulated
modulation bandwidth derived from the RIN spectrum of
hybrid lasers is also comparable to the experimental modula-
tion bandwidth [21]. The small discrepancy can be attributed
to the gain saturation effect [18], which is not considered in
this simulation for the sake of simplification. These results
indirectly verify the model we proposed.

In terms of application of a laser system, noise floor level
is also very important. Laser intensity noise, as one of the
major noise sources, limits the application for high speed
modulation system. When silicon hybrid laser is operated with
high injection currents, our simulation results show that the
noise level is close to the standard quantum limit which is
2hν/P0 = −170.68dB/Hz (with an output power of 30mW).
In addition, our calculation shows that hybrid lasers have a
similar noise level compared with conventional diode lasers.
This result indicates that silicon hybrid laser is suitable as a
source for high fidelity optical transmission.

VI. CONCLUSION

In this work, we theoretically investigate the RIN spectra of
hybrid lasers considering the two-dimension transverse mode
profiles. It shows that when only one transverse mode is
excited, the RIN spectrum of the hybrid laser shows a larger
peak value at RO frequency but a lower RO frequency than

those of the MQW laser with the same ridge width. When
two transverse modes are excited, the laser system shows two
RO frequencies. In this case, the hybrid laser shows a lower
peak value at RO frequency and a higher RO frequency than
those of the MQW laser. The effects of Si ridge heights and
III-V ridge widths on the RIN are also studied in details.
Specifically, as Si ridge height increases, when only TE00
mode is excited, the RO frequency is red-shifted and the peak
value of RIN increases; however, when both TE00 and TE10
modes are excited, RO frequencies are blue-shifted and the
peak value of RIN decreases. In addition, as the III-V ridge
width increases, when only TE00 mode is excited, the RO
frequency is red-shifted and the peak value of RIN increases;
however, when both TE00 and TE10 modes are excited, the RO
frequency is firstly blue-shifted then red-shifted and the peak
value first decreases then increases. The investigations on the
RIN spectra of the hybrid laser show an associated theoretical
maximum modulation bandwidth of the device.

The presented model can well reflect the noise characteris-
tics of hybrid lasers to some extent and enable a fast prediction
and optimization of device performance. However, there are
still certain aspects that the model can be further improved.
The most important issues, which should be taken into account
for more accurate calculations, are to include gain saturation
and heat effect. The lack of gain saturation will overestimate
the RO frequency, and lack of heat effect will assume constant
structure parameters and underestimate the noise floor level.
This requires a further investigation.
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