348

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 5, MAY 2014

Eliminating Angular Dispersion in Microcavity
by Employing Metamaterials With Hyperbolic
Dispersion as Reflectors

Xu-Lin Zhang, Jun-Feng Song, Jing Feng, and Hong-Bo Sun, Member, IEEE

Abstract— Microcavity typically exhibits a blue shift of the
resonance with the angle increasing, which may bring disad-
vantages in related applications. Herein, we propose a design
concept of eliminating the angular dispersion in microcavity by
employing metamaterials with hyperbolic dispersion as reflectors.
By exploiting optimal constitutive parameters of the metamateri-
als, the reflection phase from the cavity upon both metamaterial
reflectors increases drastically with the incident angle, and can
nearly compensate the decrement of the phase accumulation
inside the cavity for each angle. A microcavity without angular
dispersion is therefore established, in which the metamaterials
may be realized by employing metal-dielectric multilayered
structures in practice.

Index Terms— Microcavity, angular dispersion, metamaterials
with hyperbolic dispersion.

I. INTRODUCTION

ESONANT microcavity configurations, such as the

metal/dielectric/metal structures, have been explored
extensively for applications of sensors [1], lasers [2], optical
filters [3], light-emitting devices [4]-[7], and solar cells [8].
On resonance, microcavity devices can exhibit improved per-
formance due to the enhanced light-matter interaction in the
cavity. For instance, enhanced light absorption can be achieved
in solar cells via the microcavity resonance [8]. However, the
microcavity structures typically exhibit a blue shift of the
resonant wavelength with the angle increasing, also called
angular dispersion, which may bring disadvantages, such as
in light-emitting devices that the emitting colors will change
with the viewing angle varying [5], [6]. Similarly, the overall
absorptivity will decrease drastically with the incident angle
increasing in microcavity solar cells [8]. Therefore, lots of
techniques have been proposed to overcome the angular disper-
sion, such as those by introducing conjugated polymer based
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cavities [9], applying asymmetric Bragg mirrors [10], and
using dispersive gratings [11]. However, the angular dispersion
in these designs cannot be eliminated thoroughly but only
suppressed to some extent.

Recently, metamaterials with hyperbolic dispersion have
drawn more and more attentions due to their anomalous
electromagnetic features. A lot of intriguing applications, such
as cavities with anomalous scaling laws [12], invisibility
cloaking [13], loss induced transmission [14], negative index
photonic crystals [15], and tunable magnetic response [16],
have been proposed by employing such metamaterials.
Inspired by these progresses, microcavity without angular
dispersion can be expected and is needed to be investigated if
it is designed with metamaterials.

In this work, metamaterials with hyperbolic dispersion are
applied as the reflectors of the microcavity. We find by
choosing optimal constitutive parameters of the metamaterials,
the reflection phase from the cavity upon the metamaterial
reflectors can be designed to exhibit an anomalous rapid
increment with the angle increasing. Such phase increment
can, for each incident angle, nearly compensate the decrement
of the phase accumulation inside the cavity. Therefore, a
microcavity without angular dispersion can be established. The
physical origin as well as the design principle is thoroughly
investigated and discussed. We also demonstrate the possibility
in realization of such microcavity by employing the realistic
metal-dielectric multilayered structures as the metamaterial
reflectors.

II. RESULTS AND DISCUSSIONS
A. Design of Microcavity Without Angular Dispersion

We start from considering transverse-magnetic (TM) polar-
ized plane wave incidence from air upon a conventional Ag
(30 nm)/dielectric/Ag (100 nm) microcavity. The incident
angle is defined by 0, and the refractive index and thickness
of the cavity are denoted as n, = 1.7 and d = 150 nm. From
the phase point of view, the microcavity resonance reads [17]:

¢sum = ¢z¢p + wd()um + wcavily =2mmn (1)

where, as depicted in the inset of Fig. 2(a), ¢, and ¢,,,,
are reflection phases from cavity upon the reflectors, ¢, .,
is the one-round phase accumulation inside the cavity, and
m is an integer. The terms ¢, and ¢, can be calculated
by the transfer matrix method [18], and ¢_,,,,, can be solved
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Fig. 1. Reflectivity |r|2 for & = 35° (a) and reflection phase difference Ag,
between a = 35° and a = 0° (b) for TM waves from an isotropic cavity
(¢ = 1.72) upon anisotropic metamaterials (ex = Epgr bz My = 1) as a
function of ;. The wavelength is chosen as 693 nm with Epg = —18.0+1.3;.

The black stars represent the region where both near-unity |72 and positive
large Ag, exhibit.

directly by ¢,,,,, = 2kod\/n2 —sin?0, where ko (=27/2)
is the wave vector in free space. In the calculations, the Ag
permittivity ¢, is extracted from the Rsoft package [19]. The
phase variations as a function of wavelength for § = 0° (solid
lines) and & = 80° (dashed lines) are shown in Fig. 2(a),
where the intersections between the total phase ¢, -line and
2z -line correspond to the first-order resonant wavelengths.
A blue shift of the resonance can be observed with increas-
ing 6, which can mainly be attributed to the decrease of ¢, ,
since ¢, and ¢, do not exhibit contributed distinctions for
the two angles. The absorptivity spectrum, plotted in Fig. 2(d),
also confirms the blue shift, and agrees well with the phase
analysis.

Once the cavity parameters are determined, the variation
trend of ¢, cannot be avoided. Therefore, to eliminate the
angular dispersion, one should find ways to change the features
of ¢, and ¢,,,,. More specifically, a reflector, upon which the
reflection phase increases drastically with the incident angle,
needs to be designed. Our approach is to replace the conven-
tional metal reflectors with anisotropic metamaterials. To find
optimal constitutive parameters of the metamaterials, we study
the reflection phase for TM waves from one isotropic cavity
with relative permittivity ¢, upon anisotropic metamaterials.
The schematic is illustrated in the inset of Fig. 1(a), where
A1, By, and A, represent the amplitude of incident, reflected,
and transmitted waves, and o is the incident angle. The
anisotropy of the metamaterials is indicated by ¢, and ¢,, and
we simply set u, = 1. The magnetic component H, can then
be expressed as A1 exp(—jx,z)+ B exp(jx,z) in the isotropic
cavity and Ajexp(—jxpz) in the metamaterials, where we
define x, = kov/ec —sin?a and x, = koy/ex(1 — sin® a/z.).

. . . —Jj 0H,
By applying the relationship £y = ———— as well as the

.. . kOEx Z
continuity of Ey and H, at the interface (z = 0) [17], we
have A; + B; = A and (A| — B1)x,/ec = Ak, /ex. Then
we obtain the expression of the reflection coefficient:

B
rz_lz(ﬁ_'f_z)/(ﬁ+&) @)
Ay Ec Ex Ec Ex

As for normal incidence, the metamaterials can be treated
as isotropic media with permittivity ex, we set &x = &,, in all
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this work to guarantee the metamaterials to act as reflectors.
The reflectivity |r|> for a = 35° as well as the reflection
phase difference Ay, between a = 35° and a = 0° are
calculated based on (2) and shown in Fig. 1(a) and (b) as
a function of ¢,, respectively. The wavelength is chosen as
693 nm, the resonance in Fig. 2(a), with Epg = —18.04+1.3;.
We still choose ¢, = 1.72, and the transverse wave vector
at a = 35° in such a cavity is equal to that at § = 80°
in air. Apparently, we need find a region where both near-
unity |r|> and positive Ay, as large as possible exhibit. Such
region indeed exists and is located around the negative real
axis as marked by the black star. Besides, the closer to the
origin point, the larger positive Ag, exhibits. Before applying
this exotic feature, we demonstrate its physical origin. By
considering ¢; as a negative real number and using an approxi-
mation that Re(n,,) < Im(n,,) at optical frequencies, where
Ny = /Cags the reflection coefficient can be derived as:

Vee —sin®a/ec + j/1+sin?a/|e;|/Im(n,,)

r@)~ — —— )
Vée —sin“a/ec — jy/1+sin"a/le |/ Im(n,,)
The reflection phase then reads:
eev/ 1 +sin a/|e;|
o, (a) ~ 2 arctan 4
' (Im(nAg)\/gC—sinza

We conclude from (3) and (4) that the reflectivity 712 will
be near-unity and ¢,(a) will increase with o. Moreover, the
smaller |e;| is, the larger slope ¢,(a) exhibits. Therefore,
by choosing ¢, around the negative real axis as well as the
original point, the metamaterials can be used as reflectors
whose reflection phase increases rapidly with the incident
angle. As such metamaterials exhibit a hyperbolic disper-
sion [12], [14], we simply call them as hyperbolic metamate-
rials in this work.

Microcavity without angular dispersion can then be
expected by employing these metamaterials as reflectors.
We reconsider the structure depicted in the inset of Fig. 2(a).
This time the constitutive parameters of the metamaterials are
chosen as ¢x = ¢,, and &; = —0.77. The phase variation
and absorptivity spectrum are plotted in Fig. 2(b) and (e),
respectively. Compared with the phase results at § = 0°,
considerable phase increment can be provided by ¢,, and ¢,,,,
at @ = 80°. Such phase increment could nearly compensate the
phase decrement by ¢, , resulting in a nearly invariable ¢,
as well as the resonant wavelength. Interestingly, when |e.] is
further decreased to be ¢, = —0.3, as plotted in Fig. 2(c)
and (f), even excess phase compensations can be provided
by ¢,, and ¢,,,,, inducing an anomalous red shift of the
resonance. In the inset of Fig. 2(e), we add a calculation
of the iso-frequency contour of the metamaterials at the
resonant wavelength of ~693 nm, where k, and k, represent
the x- and z-direction wave vectors in the metamaterials,
respectively. The results verify the hyperbolic dispersion of the
metamaterials.

In Fig. 2(a)—(f), we have investigated the microcavity with
three sets of constitutive parameters but only at two incident
angles. To gain a comprehensive understanding of the micro-
cavity features at all angles, we fix the wavelength at 693 nm,
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Fig. 2. Phase variations in the metamaterial (30 nm)/dielectric/metamaterial (100 nm) microcavity as a function of wavelength with constitutive parameters

of e; =¢, < (a), e = —0.77 (b), and &; = —0.3 (c). The corresponding TM-polarized absorptivity spectra are plotted in (d), (e), and (f), respectively. In all
figures, we choose &x = &4, and cavity parameters of ne = 1.7 and d = 150 nm. The solid and dashed lines correspond to the results for ¢ = 0° and
6 = 80°, respectively. Inset of (e) shows the hyperbolic dispersion of the metamaterials.
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Fig. 3. Phase variations at wavelength of 693 nm as a function of
incident angle (a)-(c). Absorptivity dispersions of the microcavity for
TM-polarized incidence as a function of wavelength and incident angle
(d)—(f). The microcavity parameters are chosen as n. = 1.7 and d = 150 nm,
and the constitutive parameters of the metamaterials are indicated in each
figure.

the resonance at normal incidence, to calculate the phase
variations as a function of the incident angle. The results are
plotted in Fig. 3(a)—(c) for the same three sets of constitutive
parameters, and the corresponding absorptivity dispersions
are illustrated in Fig. 3(d)—(f), respectively. It is noted from

Fig. 3(b) that by employing hyperbolic metamaterials with
constitutive parameters optimally chosen, the variation trend
of ¢, can nearly be compensated by ¢,, + ¢,,,, in each
angle, since the ¢, -line and the 27-line almost coincide
with each other. A microcavity without angular dispersion
is therefore established, which can also be verified by the
absorptivity dispersion shown in Fig. 3(e). To further explore
such microcavity without angular dispersion, we calculate
the distributions of the magnetic field intensity enhancement
|Hy|/|Ho|(Ho corresponds to the incidence) as a function
of wavelength. The results for § = 0° and 8 = 80°
are represented in Fig. 4(a) and (b), respectively. It is
noted that compared with the field distribution at normal
incidence, the resonant wavelength as well as the quality
factor of the first-order microcavity resonance are almost
kept the same at grazing incidence. The only distinction
exists in the smaller field intensity, which is due to the
larger reflection from air upon the metamaterials at grazing
incidence.

Then we investigate the microcavity incorporating hyper-
bolic metamaterials with complex e,. The cavity parameters
are still chosen as n. = 1.7 and d = 150 nm. We define A/
as the resonant wavelength difference between & = 80° and
6 = 0°, and approximately take A1 = O as the criterion for a
microcavity without angular dispersion. Fig. 5(a) displays the
calculated A4 as a function of ¢;. The black line represents
the region where AA = 0, from which we find the various
choices of ¢;, not only on the negative real axis but also
into the complex plane, to establish a microcavity without
angular dispersion. However, the spectra with these values of
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Fig. 5. (a) Resonant wavelength difference A1 of the microcavity between
6 = 80° and 6 = 0° as a function of ¢;, where the black line represents the
region where AA = 0. (b) TM-polarized absorptivity spectra at = 80° for
three values of ¢; marked as point A, B, and C in (a). (c)—(d) The calculated
values of ¢; for A4l = 0 with different cavity thickness (c) and refractive
index (d).

£, exhibit distinctions. Fig. 5(b) shows the absorptivity spectra
at § = 80° for three values of ¢, marked as point A, B, and C
in Fig. 5(a). It is noted that the bandwidth of the microcavity
resonance increases with Im(e;). Therefore, in view of a large
quality factor, one should choose ¢, with an imaginary part as
small as possible. Then we investigate the dependence of the
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calculated values of ¢; for AA = 0 on the cavity thickness and
refractive index, with the results plotted in Fig. 5(c) and (d),
respectively. In Fig. 5(c) where the cavity refractive index is
fixed, we find that the calculated &,-line with a larger cavity
thickness is closer to the original point. This is because that a
thicker cavity will provide a larger decrement of ¢, ., with the
angle increasing, which should be compensated by a smaller
le;| induced larger Ag, (see (4)), and vice versa. In Fig. 5(d)
where the cavity thickness is fixed, we know that a cavity
with higher refractive index will provide a smaller decrement
of ¢ with the angle increasing, since

cavity

Peariy ©) = Py (0°) = =2kod sin® 0/ (e +\[n2 — sin?0).

Therefore, to compensate such smaller phase decrement, a
larger |e,| induced smaller Ag, is needed, and vice versa. This
explains the trend that the calculated ¢;-line with a higher
cavity refractive index is more far away from the original
point.

B. Realization of Microcavity Without Angular Dispersion

Finally, we demonstrate the possibility in realization of such
microcavity by employing the realistic Ag-Ge multilayered
structures [12], [14], [20] as the hyperbolic metamaterial
reflectors. The potential structure is depicted in Fig. 6(a), in
which the cavity parameters are chosen as n, = 1.7, and fag
(= 0.7) and fge (= 0.3) are the filling ratios of Ag and Ge,
respectively. We assume the thickness of one Ag-Ge pair is
far smaller than the operating wavelength. In such stacking
direction, the effective permittivity can be solved based on th(la
effective media theory [14] as &, = ( Sag/€ag + Joe /eGe)
and ¢; = f,,&,, + f5,66.- The calculated &y and & are plotted
in Fig. 6(b) and (c), respectively, where we choose ¢, = 42,
It is noted that in the wavelength range around 500 nm, the
values of ¢, much resemble those of metallic reflectors, with
which the Ag-Ge multilayered structures can be guaranteed
as reflectors for normal incidence. Besides, the real part of
&, 1s negative and near zero, while the imaginary part is also
near zero. Therefore, the effective parameters of the Ag-Ge
stack in this wavelength range may meet the requirements
for the hyperbolic metamaterials discussed before. We then
change the cavity thickness to tune the resonant wavelength.
We find that with a cavity thickness of d = 108 nm, a
microcavity without angular dispersion can be established
at the wavelength of ~510 nm with constitutive parameters
of e, = —147+ 1.7j and ¢; = —0.9 + 0.5, as shown
by the dashed lines in Fig. 6(b) and (c). The TM-polarized
absorptivity spectra are then calculated by the transfer matrix
method based on these effective parameters and plotted in
Fig. 6(d) for four incident angles, where the invariant resonant
wavelength (~510 nm) with the angle increasing can be
seen in the yellow region. The corresponding absorptivity
dispersion is also illustrated in Fig. 6(e), where the features of
the microcavity without angular dispersion can be intuitional
seen from the blue dashed region. In this design strategy,
the resonant wavelength of the microcavity can be tuned by
changing the filling ratios of Ag and Ge in the multilayered
structures.
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Fig. 6. (a) A potential realization of the microcavity by employing the realistic Ag-Ge multilayered structures as the hyperbolic metamaterials.

(b)—(c) Calculated values of ¢y (b) and ¢; (c) based on the effective media theory. (d) TM-polarized absorptivity spectra of the structure in (a) for different

incident angles. The yellow region indicates that the resonant wavelength is

nearly invariant with the angle increasing. (e) Absorptivity dispersion of the

microcavity as a function of wavelength and incident angle. The blue dashed region indicates the microcavity resonance without angular dispersion.

Although a microcavity without angular dispersion can be
established by employing the Ag-Ge multilayered structures,
unexpected resonant states emerge with the angle increasing,
such as the resonant peaks located at ~424 nm and ~469 nm
for the incident angle of 80°. To investigate such phenomenon,
we calculate the phase variations for the incident angle of
0° and 80°, with the results shown in Fig. 7(a) and (b),
respectively. It is noted that for the case of 0°, the variations of
Pup> Paown> @0d ¢, are all monotonous, resulting in only one
intersection between ¢, -line and 2z -line. Therefore, only
one microcavity resonance can be supported, as indicated by
the black point in Fig. 7(a). For the case of 80°, the resonant
wavelength of this microcavity resonance can be maintained
via our design strategy, as verified by the black point in
Fig. 7(b). However, the variations of ¢, and ¢, are no
longer monotonous, which directly lead to multiple intersec-
tions between ¢ -line and 2x-line as well as additional
microcavity resonances. Interestingly, all of these resonant
states are first-order microcavity resonances, which can further
be verified by the distributions of the magnetic field intensity
enhancement in the structures. The results are illustrated in
Fig. 7(c) and (d) for the incident angle of 0° and 80°, respec-
tively, from which the designed invariant microcavity reso-
nance at ~510 nm as well as additional first-order resonances
can be seen. Besides, in contrast with the designed microcavity
resonance, the additional resonances exhibit strong dispersions
with the angle increasing [Fig. 6(e)], which again shows
the merit of our design. Moreover, the appearance of the
multiple first-order resonances can be attributed to the non-
monotonous reflection phases from the Ag-Ge multilayered
structures, which are further induced by the strong disper-
sions of the permittivity [see Fig. 6(b) and (c)]. In our
opinion, the appearance of the additional peaks with the
angle increasing may be avoided by employing multilay-
ered structures with weak dispersions, or by applying other
types of metamaterials which exhibit our desired constitutive
parameters.
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Fig. 7. Phase variations in the Ag-Ge multilayered structures based

microcavity with incident angle of (a) 0° and (b) 80°. Distributions of the
magnetic field intensity enhancement in the Ag-Ge multilayered structures
based microcavity with incident angle of (c¢) 0° and (d) 80°. TM-polarized
incidence is applied in all these calculations.

III. CONCLUSION

To conclude, we have established a microcavity without
angular dispersion by employing metamaterials with hyper-
bolic dispersion as the reflectors. In such a microcavity,
the reflection phase from the cavity upon the metamaterial
reflectors exhibits a drastic increment with the angle increas-
ing, which can, for each incident angle, nearly compensate
the decrement of the phase accumulation inside the cavity.
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Based on this design principle, a microcavity exhibiting a
red shift of the resonance with the angle increasing can even
be designed. In practice, such hyperbolic metamaterials may
be realized by employing the metal-dielectric multilayered
structures. Besides, as other works employing the hyperbolic
metamaterials [14], [20], the design in our work also only
applies to one polarization-TM polarization, whereas a design
for TE polarization may require metamaterials with exotic
magnetic response.
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