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Abstract
The manipulation of light transmission through a sub-wavelength array of
holes is described here. We show that, similarly to metallic gratings,
periodicity realizes transmission enhancement also in dielectric gratings.
Moreover, a comparison between single-hole and multi-hole slabs shows a
strong connection between transmission enhancement and lattice periodicity.
In the end, by considering a photonic crystal slab formed by anisotropic
materials such as liquid crystals, fine tuning of transmission versus the
wavelength can be achieved.

Keywords: sub-wavelength holes, Fano resonance, Wood anomaly, photonic
crystal
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1. Introduction

In the last decade the transmission of light through an array
of periodic sub-wavelength holes has attracted increasing
attention because of its peculiar effects. Metallic slabs drilled
with sub-wavelength holes have been investigated since the
work of Ebessen and collaborators, where they showed that
unexpected transmission peaks can be obtained for some
resonant wavelengths [1]. Because of the metallic composition
of the slab, the role of surface plasmon polaritons was
analyzed in depth,and the authors reached the conclusion
that plasmons play a fundamental role in the enhancement
phenomenon [2–4]. However, further studies seem to show
how plasmons could be useful, but not essential, to enhance
transmission [5–12] or even to be a negative ingredient for such
a phenomenon [13, 14]. In the present work we will focus our
attention on a two-dimensional sub-wavelength dielectric slab,
i.e. no metal is present anywhere in/on the structure. As an
obvious consequence, we will not investigate further the direct
contribution of surface plasmon polaritons to the transmission

enhancement, but we will put the accent on the possibility
of shifting the transmission and reflection peaks by acting
either on the geometry of the slab or on an external electric
field. Besides, a comparison between single-hole and multi-
hole geometries will show how the periodicity is responsible
for the transmission enhancement.

Because we chose to emphasize the sub-wavelength
peculiarity, we can define two-dimensional sub-wavelength
dielectric slabs as a sub-class of photonic crystal slabs where
the holes (either areas with lower refractive index) have a
diameter that is much smaller than the wavelength of the
light. For such a reason, many of the characteristics and
behaviors shown by such devices resemble the well-known
two-dimensional photonic crystals. The main difference is that,
while photonic crystals have infinite translational periodicity
in any direction of the domain of definition, photonic crystal
slabs are three-dimensional structures showing periodicity only
in two directions. The solutions or modes of these devices
belong to two different categories: guided modes and quasi-
guided modes. The former are defined only inside the slab
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Figure 1. Uniform slab of thickness d and refractive index nb

surrounded by material of refractive index na. The light impinges on
it from one side at an angle α. Both transmission and reflection are
usually expected.

along its own symmetry plane and cannot couple with external
radiation; the latter vice versa can couple with external light
even though their energy is mainly confined inside the slab.
Another definition of quasi-guided modes is Fano resonances,
because they realize a coupling between a continuum and a
discrete number of states [15]. Moreover, the usual definition
of transverse electric (TE) and transverse magnetic (TM)
polarizations valid for one- and two-dimensional photonic
crystals must be slightly reconsidered. Indeed, for a photonic
crystal slab, it is better to talk about even and odd modes:
the former analogous to TE and the latter to TM [16]. The
justification is that, while photonic crystals show an infinite
and innumerable amount of mirror symmetry planes, a slab can
show one of them only.

In [17], the authors introduced an alternative mathematical
approach to solve the electromagnetic field distribution in
anisotropic dielectric slabs numerically by using an extension
of the scattering matrix method. Here we are going to
apply such a method to show the geometry dependence of
transmission peaks in two kind of structures: an isotropic
crystal slab made out of c-Si and SiO2 and a dielectric slab
realized with liquid crystals embedded in between layers of
SiO2 material. In the last case an external electric field has
the role of tuning the transmission peaks. The same method
will also be used to investigate the influence of the periodicity
on the transmission in isotropic crystal.

The paper is organized as follows. First, we introduce
an example to show how geometrical and optical properties
are linked to each other in photonic crystal slabs. For such
a purpose, an isotropic slab realized by means of a background
of c-Si periodically filled with SiO2 is simulated. In particular,
we explain how different behaviors can result according to
which diffracted mode is observed. Next, to analyze the role
played by the periodicity in the transmission, we compare a
single-hole structure with a multi-hole structure. Finally, an
anisotropic photonic crystal slab made out of liquid crystal
is considered and the tuning of transmission by means of an
external constant electric field is shown.

2. Isotropic structure

To review some of the optical properties of a photonic crystal
slab, it is useful to start with the simple example of a non-
absorbing uniform slab of thickness d and refractive index nb

Figure 2. Photonic crystal slab formed by a square distribution of
circular SiO2 (light color) holes inside a layer of c-Si (dark color).
Here we assume that d = 0.5a is the slab thickness and r = 0.15a is
the hole radius, where a is the lattice period.

in a background of refractive index na, as shown in figure 1.
If light impinges on it from one side at an angle α to the
normal to the interface, by means of the conservation relations
of the components of electric and magnetic fields parallel
and orthogonal to the interface, it is possible to calculate
analytically both transmission and reflection. In the special
case where the incident light is orthogonal to the surface (α =
0), the relation defining reflection is:

r ∝ (na − nb)
2 sin(kbd) (1)

where kb is the wavevector in the slab. From equation (1), the
condition for having zero reflection is simply kb = mπ/d,
where m is an integer number (besides the trivial solution
na = nb, namely no refractive index modulation). Such a result
is exactly the same that is obtainable by solving a quantum well
or a Fabry–Perot etalon. If the incident light shows a non-zero
angle α, a more general equation than (1) can be obtained [18],
where reflection is proportional to sin(kb,zd), where kb,z is
the component of the k vector along the z direction inside
the slab. However, no extra information is carried, namely
the conditions for zero reflection are unchanged. By looking
in detail at the resonant conditions, it is obvious that the
transmission resonant peaks shift to higher wavelengths when
the thickness of the slab increases or, in other words, both the
angle α and the slab thickness d must be increased/decreased
to maintain a resonant situation.

In the case where a periodic modulation of the refractive
index is introduced into the slab, a structure such as in figure 2
is obtained. Along the directions x and y, holes with square
periodicity are introduced, whereas along the z direction the
structure is uniform. In particular, the holes are filled with
SiO2, and the slab is made out of crystalline silicon (c-Si) and
is sandwiched between infinite layers of SiO2. The refractive
index is considered to be frequency independent, with values
of 3.5 for c-Si and 1.46 for SiO2. The radius r is 0.15a and the
slab thickness d is 0.5a, where a is the lattice constant.

It is well known [15] that coupling between a continuum
with discrete states realizes asymmetric modes, which are also
known as Fano’s modes or Wood’s anomaly [19]. Beside this,
the mode asymmetry depends on many factors, such as the
background [18] and the amount of available discrete levels.
Figure 3 shows the total (all diffracted orders) transmission
spectrum and the in-plane energy distribution on the top
layer of the slab when the light is vertically incident with a
wavelength of λ = 2.066a. Three Fano’s peaks are present
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Figure 3. (Multimedia file of 2.6 Mb in AVI format available at
stacks.iop.org/JOptA/9/S450) c-Si–SiO2 photonic crystal slab with
SiO2 hole at (0, 0). The radius is 0.15a and the slab thickness is
0.5a. The light is orthogonal to the top interface. Because of this,
odd and even modes are degenerative (the structure manifests
in-plane rotational symmetry). The bottom figure shows the total
transmission spectrum versus wavelength. The (red) circle
corresponds to λ = 2.066a. At the top, the associated in-plane
energy distribution at z = 0 is illustrated. Positive values in the scale
bar mean a Poynting vector parallel to the positive z axis (energy
current entering the slab).

in the range of wavelengths from 1.9a to 2.2a: at 1.987a,
2.066a and 2.084a. It is worthwhile looking at the scale which
emphasizes the sharp energy distribution. In particular, the
additional data related to figure 3 show that at the three Fano’s
peaks the energy is strongly confined in the slab, meaning a
high in-plane Q factor. An alternative way to demonstrate
such a statement is to look at the ratio w/δw, where w is
the center of the resonance and δw is the line-width, which
also defines the quality factor Q. Rough estimations for Q for
the three resonant peaks are 330, 1400 and 370, respectively.
The explanation is the occurrence of coupling between the
incoming light and the quasi-guided modes of the slab. Vice
versa, for non-resonant wavelengths, the light is not strongly
confined in the slab, meaning direct transmission through the
slab. This description is in agreement with the results obtained
in [18], where two pathways in the transmission process
were identified. Besides, Fano [15] had already presented
an approach to describe the coupling between discrete and
continuum states. It is worthwhile mentioning that in his case
too, even though it could not look as straightforward as in [18],
the two contributions, resonant and direct, were considered in
a kind of quantum interference frame.

Because of the grating properties of the slab, when the
device is illuminated from the top at an angle θ to the vertical
(z direction), different scattered orders, both in reflection and
transmission, can be expected (see figure 4(a)). Moreover,
when the thickness of the slab changes, a shift of the relative
intensity of the diffracted orders is observed. Such a behavior
is analogous to the case of uniform slab discussed previously.
However, because different diffracted orders are now expected,
some substantial differences occur. In figure 4(b), the zeroth
and first diffracted orders in transmission are shown. At
d = 0.497a, r = 0.15a, θ = 20.47◦ and λ = 1.5a,

(a)

(b)

(c)

Figure 4. (a) Schematic representation of the zeroth and first
scattered orders. The incoming light forms an angle θ with the
vertical. The electric field is parallel to the y direction. (b)
Transmitted light for the first two diffracted orders versus the angle
θ . Each graph shows a situation with different slab thickness. The
red arrows (dotted line) highlight the shift to higher angles of S0

when the slab thickness increases. Vice versa, the blue arrows show
the behavior of the first diffracted order (continuous line). (c) Ratio
between the first-order and the zeroth-order diffracted light. At
d = 0.497a and θ = 20.47◦, the transmission ratio is about 7000.
Here λ = λ0/nSiO2 = 1.5a/1.46 and r = 0.15a.

the transmission ratio between the first- and the zeroth-order
diffracted light is about 7000 (see figure 4(c)). From the
results emerges clearly a high sensitivity toward the thickness
variation. In particular, the resonant maximum for S0 shifts to
higher angles θ when the thickness is increased, whereas S1

shows opposite behavior. This can be explained by using both
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Figure 5. A system composed of a uniform medium of refractive
index n1 in contact with a photonic crystal slab of thickness d and
effective refractive index n2. Light of wavelength λ impinges on the
slab at an angle θi to the normal at the interface.

the frame of the second Wood anomaly [19] and diffraction
considerations all together. The phenomenon then consists in
coupling between the diffracted orders and the eigenmodes of
the slab and/or direct transmission through it. Because here we
are not considering metallic structures, no surface plasmons
can be excited. The remaining possibility is that the diffracted
orders couple with quasi-guided modes of the device. In
fact, as mentioned in the introduction, they are the only slab
modes which can couple with external radiation. Hence, their
mathematical expression is proportional to eikz z�Bloch, where
the first factor takes into account the propagating component
along the z direction, and �Bloch represents the Bloch modes
traveling along the plane of the slab. The transmission
resonance is dependent on the quantity eikz z which reveals the
resonance conditions to have zero reflection. To understand
in detail the results of figure 4, let us consider the sketch of
figure 5. This represents a crystal slab of effective refractive
index n2 surrounded by a uniform material of refractive index
n1. Next, we will refer to variables related to the media with
indexes 1 and 2, respectively. Light of wavelength λ = λ0/n1

(where λ0 is the incoming wavelength in vacuum) hits the
surface of the slab of thickness d, with an angle θi to the normal
at the surface. This situation resembles figure 1. There are
now two equations that must be solved together to calculate
the conditions to have zero reflection. They are:

kz = m
π

d
(2)

which gives the the relation to have zero reflection in a uniform
material. m is an integer number. Next, we must take into
account the extra contribution to the wavevector parallel to the
slab, kx , coming from the periodicity:

kx → kx + NGx (3)

where Gx = 2π/a is the lattice constant in the reciprocal space
and N is an integer number. Putting the two equations together
and remembering that the wavevector parallel to the interface
must be conserved, we obtain:

k2
2 − (k1 sin θi + NGx )

2 = m2 π2

d2
(4)

where ki = k0ni , i = 1, 2, with k0 being the wavevector
in vacuum. Because for the zeroth diffracted order we have
N = 0, we can simplify equation (4):

k2
2 − k2

1 sin θ 2
i = m2 π2

d2
. (5)

In the case of the first diffracted order, N = −1, hence
equation (4) becomes:

k2
2 − (k1 sin θi − Gx )

2 = m2 π2

d2
(6)

Let us now comment on the results. Equation (5) shows that, to
maintain resonant conditions, when the angle θi increases then
the thickness d must increase too. This is in agreement with
the behavior of S0 in figure 4(b). Vice versa, in equation (6),
because of the inequality Gx > k1 sin θi , we can easily see
that the variables θi and d have an opposite relation than that
in equation (5), namely θi increases when d decreases. This
matches the behavior of the diffracted order S1 in figure 4(b).
However, in such a graph, the zeroth diffracted order also
shows a dip moving to lower angles when the thickness d
increases. Even though this seems to contradict equation (5), a
simple consideration about energy conservation immediately
suggests how it is the counterpart of the maximum in S1.
Furthermore, by looking at the shapes of both the zeroth and
first diffracted orders, and considering the typical form of a
Fano resonance, it seems safe to argue that they are associated
with two different transmission paths [18]. In particular, the
zeroth order recalls a Fabry–Perot mode (and the shift analysis
supports such a statement), namely direct transmission through
the slab, whereas the first order manifests the coupling of the
incident light with quasi-guided modes of the slab. To conclude
this paragraph, we have to notice that, to realize a precise
prediction of the diffractive order behavior, instead of using
the effective refractive index of the slab (valid only in the long
wave approximation regime), we should consider the effective
refractive index of the specific mode. Besides, equation (2)
should take into account the reflection phase shift φ too, and so
to become k → k +φ/d. These requests can be fulfilled easily
by means of numerical simulations. However, the general
conclusions just illustrated would maintain their validity.

3. Single-hole slab versus multi-hole slab

So far we have explained the transmission peaks through a
photonic crystal slab as being due to the coupling between
incoming light and quasi-guided modes. However, we could
wonder if there exists any difference in transmission between a
slab with a single hole and an infinite array of holes. To answer
this question, a brief review of two-dimensional metallic sub-
wavelength gratings is helpful. One of the often-considered
channels for the enhancement of transmission in metallic sub-
wavelength gratings is given by surface plasmon–polaritons.
It is said that they play a key role in the enhancement
process [1]. However, an alternative picture in which plasmon–
polaritons are just one of the ingredients for realizing strong
transmission has been introduced [5, 9]. In such a description,
the enhancement is explained in terms of light interference in
the metallic slab. Because the device analyzed here does not
satisfy any of the conditions for manifesting metallic surface
modes (for example, the dielectric function is never negative),
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Figure 6. From (a) to (d), four situations are shown: single isolated hole (a = ∞), semi-isolated hole (a = 5 μm), semi-communicating hole
(a = 3 μm) and communicating hole (a = 1 μm), where a is the lattice constant. The holes are realized with SiO2 and the slab with c-Si. The
geometrical parameters are the same as in figure 3.

the interference method is definitely what we need to describe
our results. In order to do this, a main consideration must
follow. In [9], the interference pattern is calculated starting
from the light diffracted by a single slit in an opaque screen.
For such a reason, each hole of a thick metallic grating can
be considered to be a point source, and an interference pattern
can be calculated. Here, however, because of the choice of
materials, the hypothesis of dealing with an opaque screen is
no longer valid. Anyway, diffraction occurs in a dielectric
photonic crystal too, hence we can assume that we have a
pattern of point sources, respecting the symmetry of the slab,
which can be described by means of the same approach used
in [9]. The only difference from a metallic grating is that
the point sources are not strictly defined inside the holes
only. Hence a slightly different approach must be followed.
In particular, we have to make a comparison between the
power coming from a single unit cell (and not a hole only)
of the periodic slab and an analogous domain (no longer a
unit cell, because no periodicity is present) surrounded by
uniform material. We first simulated an isolated single hole
and next we introduced a periodicity a by means of some
neighbours. Then we reduced the period of the crystal to fill the
unit cell slowly to analyze the influence that single holes can
have on each other. The geometrical and material parameters
are the same as in figure 3, with λ = 2.066a. A schematic
representation is shown in figure 6. In (a), an isolated hole
is irradiated. Because the wavelength of the incident light is
much bigger than the diameter of the hole, the transmission
spectrum is expected to be similar to the case of a uniform
slab. In (b), some neighbours are introduced into the slab.
Their minimum distance from the central hole is five lattice
constants. In (c), the condition of isolation of the central hole
is further reduced by putting extra neighbours at just three

lattice constants from the center. Finally, a periodic structure
with periodicity equal to one is introduced (d). In all four
cases, both the radius and the thickness of the slab are kept
constant. As expected, from figure 7 we see that, moving
from a single isolated hole (case (a)) to a periodic array of
holes (cases (b) to (d)), Fano’s peaks appear, showing that
quasi-guided modes are realized inside the slab. Moreover, the
closer the holes are, the stronger the Fano’s peaks become. The
mechanism for describing such a transmission enhancement is
then consistent with the description which claims diffraction
to be the only necessary frame for explaining extraordinary
transmission, both in dielectric and in metal periodic structures.
In figure 7(a), the graphs corresponding to a uniform slab
(continuous line) and a single hole (dot line) are overlapped.
This means that the light cannot feel the presence of a single
hole, namely no diffraction occurs, at least for the geometrical
parameters used in the simulations. The only channel available
to light to cross the slab is through direct transmission. In the
case of the absence of any holes, we find the typical etalon
oscillations.

So far we have shown explicitly that the thickness of the
slab, the angle of incidence and the wavelength are closely
connected to giving the Fano resonance. However, nothing was
really said about the role played by the radius of the holes. The
reader could have correctly guessed that, in the calculation of
the effective refractive index, the radius of the holes must be
considered. Now we want to show another example where the
only modification of the radius realizes a tuning of the resonant
peaks. In figure 7(b), two curves are close to each other: one
for the case at r = 0.15a and the next for r = 0.40a. It is
interesting to notice that, by increasing the radius, Fano peaks
tend to become broader and to shift to lower wavelength. The
reasons are the tendency of the light to be less localized inside
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Figure 7. Total transmissions corresponding to the structures of figure 6 are shown. On increasing the density of the holes, the Fano peaks
start to appear. When the holes are sufficiently close to each other, the Fano peaks are well defined (d). In (a), the overlap between a single
hole (dot line) and a uniform slab (continuous line) are also realized. No differences occur. In (b), both the case at radius r = 0.15a and the
case at r = 0.40a are shown. In the case of the bigger radius, the Fano peaks become broader and shift to shorter wavelengths. The thickness
of the slab is d = 0.5a, the radius r = 0.15a, and a = 1 μm is the lattice constant. The light is orthogonal to the plane of the slab.

Figure 8. Liquid crystal (in dark) embedded in between SiO2 layers.
Em is the manipulative field.

the slab as well as the reduction of the effective refractive index
of the slab, respectively.

4. Liquid crystals in sub-wavelength dielectric slab

Liquid crystals (LC) are anisotropic substances which show
both liquid and solid behavior, in the sense that, according to
external conditions, they can either modify or maintain their
own position. Some of the parameters that can be adjusted to
control the orientation of liquid crystals are the temperature
and the electric field. In particular, we are going to consider
LC manipulation through an external electric bias. Because
the refractive index depends on the crystal orientations, the
natural conclusion is that the electric field can control the
LC refractive index. The model investigated here is shown
in figure 8. It consists of two-dimensional SiO2 rods in a
square pattern, grown on a SiO2 substrate, surrounded by LC

Figure 9. Transmission spectrum with external electric field Em

belonging to the x–y plane. The light polarization is along the x axis.
γ is the angle between Em and the x axis. λ is the wavelength of the
incoming light. All the diffracted orders are considered here.

material. In the end, SiO2 bulk is positioned to embrace the
LC. The structure parameters are as follows: a is the lattice
constant, the rod radius is 0.3a and the liquid crystal thickness
is equal to 5a. We assume an extraordinary refractive index
ne = 1.706 along the x axis and an ordinary refractive index
no = 1.522 in both the y and z axes. From a practical point
of view, such a design presents a drawback that is not easy to
solve, namely the difficulty in maintaining the LC alignment.
However, at this stage, we are interested in showing the strong
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Figure 10. (a) and (b) illustrate the distribution of the component Sx

of the Poynting vector of the photonic crystal slab. In (a) and (b) γ is
equal to 0◦ and 5◦, respectively. In other words, in (a) ne is along x
axis whereas in (b) it is along the direction forming 5◦ with x axis.
The incoming light is at an angle θ = 30◦ from z (see figure 8) with
polarization parallel to x axis and wavelength λ = 2.2036a. The
Poynting vector is averaged on a unit cell. In (a) and (b) the top
figures show the distribution of the incident component Sx ,in and
reflection Sx ,r above the top layer of the slab; the bottom figures,
illustrate the overall energy flux distribution across the slab (the last
denoted by the the dot lines). d is the slab thickness. It is also
important to notice that because of the scale in the abscissa, the top
figure in (a) seems to show a value of Sx ,in/|Sin| equal to zero.
However the real value is 0.5 (as expected considering that θ = 30◦).
In these numerical simulations the totality of the diffracted orders
were considered.

connection between the change in refractive index and the
transmission shift, so that the deficiency mentioned is not an
issue. If the incident light is along the z axis with polarization
along the x direction and the electric field Em shows an angle
γ to the x axis, then the transmission spectrum illustrated
in figure 9 is obtained. A Fano resonance is shown in the
interval of wavelengths from 1.524a to 1.544a. When the
angle γ is increased, the peak moves to shorter wavelengths. In
particular, changing the electric field orientation by 20◦ results
in a Fano mode shift of 10 nm, at a = 1 μm. Fano resonances
occur when the energy is mainly confined inside the slab. This
is because they represent the coupling between a continuum of
states and discrete states. In particular, if the incident angle θ

Figure 11. Total transmission for liquid crystal system when the
electric field Em is either at 0◦ or 5◦ from x axis. Two resonant peaks
of high quality factor Q (about 20 000) occur at two different
wavelengths.

is 30◦ away from the z axis on the x–z plane, a Fano resonant
wavelength of 2.2036a is obtained. Assuming such a value as
the incoming wavelength, if the angle γ of the external electric
field to the x axis is 0◦, then the distribution of the Poynting
vector component Sx is shown in figure 10(a). The abscissa
represents the ratio between Sx and Sin, the last being the total
energy flux of the incident light. We can see that the energy
is concentrated inside the slab and it tends to flow along the
negative x direction. Indeed, for the parameters corresponding
to figure 10(a), both Sy and Sz are approximately zero. If
the angle γ is changed to 5◦, the energy flux inside the slab
along the negative x direction is greatly reduced, as shown by
figure 10(b). To understand such results better, we have also
calculated the total transmission for both angles. In figure 11,
the transmission at λ = 2.2036a drops dramatically in the
case of γ = 0◦. Vice versa, for γ = 5◦ the resonance is at
λ = 2.2043a. Besides, confirmation of high energy storage
inside the slab is given by the estimation of the quality factor
Q, which is roughly 20 000.

Because of the obvious high sensitivity presented by the
LC, such a structure can be utilized for a broad range of
applications. For example, it can be used as a high-sensitivity
electronic detector, or an optical coupler for waveguides.
Another application is in the photoluminescence field. Indeed,
filling organic dye into liquid crystals and irradiating the
system with light at the Fano resonant wavelengths will result
in an increase in the photoluminescence effect. In fact,
at Fano resonances, as shown in figure 10, the energy is
strongly confined inside the slab, being several thousands times
bigger that the incident energy flux. Because of this, even
compounds with a low quantum yield (the ratio between the
numbers of emitted and absorbed photons) can realize efficient
fluorescence.

5. Conclusion

In summary, we have investigated some of the physical
phenomena that occur when light couples with a sub-
wavelength photonic crystal slab. In particular, we have
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analyzed the influence of an array of holes on the transmission
enhancement and described it in a diffraction frame. Moreover,
we have shown that the manipulation of an external electric
field acting on an anisotropic structure made of liquid crystals
realizes tuning of the transmission peaks. Furthermore,
high sensitivity dependence on the incident electric field
orientation is also obtained. At Fano resonant wavelengths,
photonic quasi-guided modes inside the liquid crystal layer are
manifested. However, they are so sensitive to the electric field
direction that its modification of only a few degrees makes the
modes almost disappear. Such characteristics offer an initial
hint for the realization of devices that are able to manipulate
light, such as electric field detectors, switches, and so on.
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