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Abstract: A three dimensional analysis of a special class of anisotropic 
materials is presented. We introduce an extension of the Scattering Matrix 
Method (SMM) to investigate the behavior of anisotropic Photonic Crystal 
Slabs (PhCS) subject to external radiation. We show how the Fano effect 
can play a fundamental role in the realization of tunable optical devices. 
Moreover, we show how to utilize electron injection, electric field and 
temperature as parameters to control the Fano resonance shift in both 
isotropic and anisotropic materials as Si and Potassium Titanium Oxide 
Phosphate (KTP). We will see that because Fano modes are sensitive and 
controllable, a broad range of applications can be considered.  
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1. Introduction 

Photonic Crystal Slab (PhCS) represents the fundamental structure for photon integration 
circuits. Many devices have an architecture based on PhCS, such as waveguides, filters, 
splitters, modulators and lasers [1-5]. The basic idea is to utilize the characteristic band gap or 
dispersion relation of PhCS to get the desired device performances. For example, waveguides 
support guided modes that are confined in the slab plane, with no possibility to interact with 
any external radiation. 

Because of their potential applications, PhCS have been recently attracting more attention, 
as testify by the number of publications in the field [6-9]. An important and interesting 
phenomenon which can occur in PhCS is Fano resonance. This effect manifests itself when 
incoming light can couple a discrete state with a continuum of states. Astratov et al. [10,11] 
measured reflection spectra of one and two dimensional PhCS, showing sharp resonant peaks, 
which greatly depend on incident radiation angle and wavelength. From the numerical 
solution of the Maxwell equations, it was found that the sharp peaks have related solutions in 
the dispersion relation, explainable with the discrete-continuum coupling description. In their 
experiment, Crozier et al. [9] demonstrated that the resonances of an air-bridged photonic 
crystal slab exhibit considerable differences in their sensitivity according to the angle of 
illumination. Rosenberg et al. [12] showed that guided resonant modes can be readily 
observed in asymmetrical photonic crystal slabs built on high-index substrates. The guided 
resonant modes are found to give rise to strong high Q factor in the transmission spectra. 
Miroshnichenko et al. [13] demonstrated that high transmission through sharp bends in 
photonic crystal waveguides can be described by a simple model of the Fano resonance. 
Shanhui Fan et al. [6] showed that transmission and reflection of Fano resonance can be 
accounted by a simple Lorentzian resonance in the complex frequency plane. 

One of the most popular simulation methods used for the present calculations consists in 
using the popular Finite-Difference Time-Domain (FDTD) algorithm joined with absorbing 
boundary conditions, usually known as Perfectly Matched Layer (PML). The excellence 
peculiarity of this method is the possibility to track the photon position to determine how the 
electromagnetic field will dislocate in the system. On the other hand, such a method presents 
the disadvantages of requiring huge amount of memory and long calculation time. An 
alternative approach, used in this paper, is to consider the Scattering Matrix Method (SMM) 
[14,15] that has the appreciable characteristic to avoid the mentioned drawbacks and, at the 
same time, to provide a reliable simulation for photonic crystal slabs. 

In this paper, we will firstly extent the SMM to anisotropic materials, then we will apply 
it to investigate Fano resonance in general PhCS, and finally we will show how to control 
Fano modes in anisotropic materials. 

2. Scattering Matrix Method in photonic crystal slabs 

A commonly used representation of PhCS is shown in Fig. 1. The two dimensional periodicity 
is defined on the x-y plane, whereas in z direction uniformity is considered. Moreover, the  
electromagnetic field defining the system is assumed to have harmonic time dependence 
described by exp(-iωt). The Maxwell equations for anisotropic materials will then be  
expressed as,  

E Biω∇× = ,   H Diω∇× = − ,   0B∇ ⋅ = ,   0D∇ ⋅ =                 (1) 
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where ( ) ( ) ( )0B r μ r H rμ=  and ( ) ( ) ( )0D r ε r E rε= ⋅ . The quantities ( )ε r  and ( )μ r  are the 

 
Fig. 1. Photonic crystal slab structure consisting of a square lattice of holes 
embedded into a uniform material. 

 
relative dielectric constant and permeability, respectively. By defining the parallel 

components of the electric and magnetic field as ( )E
T

// y xe ,e= and ( )H
T

// x yh ,h= − [16], we 

can rewrite Eq. (1) as 

                          0 0E Hxx xy xz

// z // z
yx yy yz

y
e i i h

z

x

μ μ μ
ωμ ωμ

μ μ μ

∂⎛ ⎞
⎜ ⎟ −⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟− + = − +⎜ ⎟ ⎜ ⎟− −∂ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
⎜ ⎟∂⎝ ⎠

 

                              ( )0 0E H// zx zy // zz zi i h
x y

ωμ μ μ ωμ μ⎛ ⎞∂ ∂− = − +⎜ ⎟∂ ∂⎝ ⎠
 

                          0 0H Hyy yx yz
// z // z

xy xx xz

x
h i i e

z
y

ε ε ε
ωε ωε

ε ε ε

∂⎛ ⎞−⎜ ⎟ ⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟− + = − −⎜ ⎟ ⎜ ⎟∂∂ ⎜ ⎟ ⎝ ⎠⎝ ⎠
⎜ ⎟∂⎝ ⎠

         

                                   ( )0 0H E// zy zx // zz zi i e
y x

ωε ε ε ωε ε⎛ ⎞∂ ∂ = − −⎜ ⎟∂ ∂⎝ ⎠
                               (2) 

 
Once removed both E and H z-component from Eq. (2), we obtain: 

                                             

( ) ( )

( ) ( )

1 00

0

1 00

0

H F H F E

E T E T H

// // //

// // //

ik
i

z

i
i

z k

ωμ
ωμ

∂ ⎡ ⎤+ = ⎣ ⎦∂
∂ ⎡ ⎤+ = ⎣ ⎦∂

                                               (3) 

where 

                     

( ) ( )

( ) ( )

1 1 1

0 1 1

F

F

yz
zz zx zy zz

xz

yy yx yz
zz zy zx zz

xy xx xz

xˆ
y x

y

xˆ
x y

y

ε
μ μ μ ε

ε

ε ε ε
ε ε ε με ε ε

− −

− −

∂⎛ ⎞−⎜ ⎟ ⎛ ⎞ ⎛ ⎞∂ ∂∂⎜ ⎟= − − − ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠⎝ ⎠
⎜ ⎟∂⎝ ⎠

∂⎛ ⎞−⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
⎜ ⎟∂⎝ ⎠
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z 
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2r 

d 

#71858 - $15.00 USD Received 12 June 2006; revised 27 July 2006; accepted 28 July 2006

(C) 2006 OSA 18 September 2006 / Vol. 14,  No. 19 / OPTICS EXPRESS  8815



                  

( ) ( )

( ) ( )

1 1 1

0 1 1

T

T

xz

zz zz zy zx
yz

xx xy xz

zz zx zy zz
yx yy yz

yˆ
x y

x

yˆ
y x

x

μ
μ ε ε εμ

μ μ μ
μ μ μ εμ μ μ

− −

− −

∂⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟− ∂ ∂ ⎜ ⎟∂⎝ ⎠⎝ ⎠
⎜ ⎟∂⎝ ⎠

∂⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂⎜ ⎟= + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − ∂ ∂⎜ ⎟∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎜ ⎟∂⎝ ⎠

                (4) 

Because of the structure periodicity, by using the Bloch theorem, the fields can be expanded 
as: 

                                        
( ) ( ) ( )

( ) ( ) ( )
G

G

H r k G H G

E r k G E G

// //

// //

exp i z

exp i z

β

β

= +

= +

∑

∑
                                             (5) 

being β the wave vector along z direction and ( )1
k G k G rexp i

A
⎡ ⎤+ = + ⋅⎣ ⎦ . In the last 

expression k is the wave vector in the lattice Brillouin zone, G the reciprocal primitive lattice 
vector, r the position vector in the x-y plane and A the area of the in-plane unit cell. 

The relative dielectric constant ( )ε r  and permeability ( )μ r  are periodical tensors for the 

real space, so they can be express by means of Fourier series: 

                                             
( ) ( )

( ) ( )

G
G

G
G

ε r V k G r

μ r U k G r

exp i

exp i

⎡ ⎤= + ⋅⎣ ⎦

⎡ ⎤= + ⋅⎣ ⎦

∑

∑
                                                 (6) 

where, 
                                        ( )G G G GV k G ε r k G ,V′ ′− ′= + + =  

                                       ( )G G G GU k G μ r k G ,U′ ′− ′= + + =                                                (7) 

Here the operator � �  denotes integration in x-y plane on a unit cell domain. If P and Q are 

elements of either ( )ε r  or ( )μ r , natural extension of Eq. (7) results to be 

                                     G ,G G ,G
G

k G PQ k G P Q′ ′′ ′′
′′

′+ + = ⋅∑                                                 (8) 

Changing the Eq. (4) to matrix format: 

    

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( )
( ) ( ) ( )( )

1 1 1

0 1

1

V
F U U U V

V

V V V
F V V V

V V V

U

x x yz
zz zx zy zz y y x x

xzy y

yy yx yz
zz zy zx

xy xx xz

x x

zz x x y y
y y

diag k G
diag k G diag k G

diag k G

diag k G
diag k G diag k G

diag k G

− −

−

−

+⎛ ⎞ ⎛ ⎞
⎜ ⎟= − + + +⎜ ⎟⎜ ⎟− + ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

+⎛ ⎞
⎜ ⎟ + − +
⎜ ⎟− +⎝ ⎠
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( ) ( ) ( )( ) ( )
( )

( )

( ) ( )

( )
( )

( ) ( )( )

1 1 1

0 1

1

U
T U V V V

U

U U U
T U U U

U U U

V

xz y y
zz x x y y zz zy zx

yz x x

xx xy xz

zz zx zy
yx yy yz

y y
zz y y x x

x x

diag k G
diag k G diag k G

diag k G

diag k G
diag k G diag k G

diag k G

− −

−

−

⎛ ⎞+⎛ ⎞
⎜ ⎟= + − + +⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
= + − −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞+
⎜ ⎟ + +
⎜ ⎟+⎝ ⎠

 (9) 

 
Here diag represents a diagonal square matrix.  By combining the previous relations we can 
get the parallel components of the electric and magnetic eigenfunctions in the reciprocal space:  
 

      ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1 1

1 0 1 0 0 1 0 1 0 02H G F F T F H G F T F F F T H G O// // //β β
− −⎡ ⎤ ⎡ ⎤+ + + − =

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1 1

1 0 1 0 0 1 0 1 0 02E G T T F T E G T F T T T F E G O// // //β β
− −⎡ ⎤ ⎡ ⎤+ + + − =

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
     (10) 

 
In several special situations, as for example in isotropic materials, dielectric and permeability 

tensors are constant quantities, hence ( ) ( )1 1F T O= = . Under such hypothesis, Eq. (10) 
assumes a very simple form: 

                                          ( ) ( ) ( ) ( )0 02H G F T H G O// //β − =  

                                          ( ) ( ) ( ) ( )0 02E G T F E G O// //β − =                                                    (11) 

where  

                 ( ) ( )
( ) ( ) ( )( )0 1V O

F U
O V

x x

x x y y
y y

diag k G
diag k G diag k G

diag k G
−

+⎛ ⎞⎛ ⎞
⎜ ⎟= − + − +⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 

                  ( ) ( )
( )

( ) ( )( )0 1U Ο
T V

O U
y y

y y x x

x x

diag k G
diag k G diag k G

diag k G

−
⎛ ⎞+⎛ ⎞
⎜ ⎟= − + +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

           (12) 

are written using the matrix formalism.  
      For anisotropic materials, when a critical direction is along z axis only, still 

( ) ( )1 1F T O= = . In this situation, ( )0F  and ( )0T  are described as: 
 

            ( ) ( )
( ) ( ) ( )( )0 1

V V
F U

V V
x xyy yx

zz x x y y
xy xx y y

diag k G
diag k G diag k G

diag k G
−

+⎛ ⎞⎛ ⎞
⎜ ⎟= − + − +⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 

           ( ) ( )
( )

( ) ( )( )0 1
U U

T V
U U

xx xy y y
zz y y x x

yx yy x x

diag k G
diag k G diag k G

diag k G

−
⎛ ⎞− +⎛ ⎞
⎜ ⎟= − + +⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

        (13) 

 
By solving the eigenvalue problems (10) for E // ( H // ), we get the elements of electric 

(magnetic) field in x-y plane. Then, by means of Eq. (3), we can easily recover the H // ( E // ) 
expression. Finally, we can express the fields as the sum of eigenfunctions: 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

G

G

H r k G H G H G

E r k G E G E G

// //, j j j //, j j j
, j

// //, j j j //, j j j
, j

a exp i z b exp i z

a exp i z b exp i z

β β

β β

+ + − −

+ + − −

⎡ ⎤= + +⎢ ⎥⎣ ⎦

⎡ ⎤= + +⎢ ⎥⎣ ⎦

∑

∑
            (14) 

where ( )+ and ( )−  denote quasi forward and backward waves which are defined by the wave 

number jβ . When jβ  is a real number, it is assumed to be positive for the (+) modes and 

negative for the (-) modes. If  jβ  is a complex number, the sign for the modes (+) and (-) is 

dictated by its imaginary part, similarly at the real case [15]. ja and jb  are amplitude 

components of forward and backward waves, respectively. 
At the interface, because of the electromagnetic boundary conditions, we have the relations: 
 

                          
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

E G E G E G E Ga b

b aH G H G H G H G

// // // //

// // // //

+ − − +

+ − − +

⎛ ⎞ ⎛ ⎞′ ′− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ⎜ ⎟ ′′ ′− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

                    (15) 

 
We use the apex to denote the amplitude at other side of interface. The scattering matrix 
equation is defined as:  

                                                     
a b

S
b a

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

,          

where,  

                            
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

E G E G E G E G
S

H G H G H G H G

// // // //

// // // //

−− + + −

− + + −

⎛ ⎞ ⎛ ⎞′ ′− −
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟′ ′− −⎝ ⎠ ⎝ ⎠

                           (16) 

S is the scattering matrix. The z component of the Poynting vector is 

( ) ( )( )1 2 E r H r*
z // //S Re= × , and it is a periodic function. However, we concern about the 

spatial average of the energy current in the plane. By integrating the quantity Sz on a unit cell, 

we obtain ( ) ( )1 2 E G H Gz // //S Re +⎡ ⎤= ⋅⎣ ⎦ , where the superscript + represents the transpose-

conjugate operation. In the end, the transmission and reflection are defined as out in
z zT S S= , 

re in
z zR S S= , respectively. Here, in

zS , re
zS  and out

zS  are z components of Poynting vectors of 
incident, reflection and transmission light, respectively.  

The number of plane waves utilized in the simulations presented in this paper oscillates 
between 81 and 197. For example, in Fig. 2 we have used 197 plane waves. Because the main 
goal of this paper is to show the possibility to control Fano’s resonances, we believe that a 
further increment of plane waves cannot give us any more knowledge about the simulated 
systems. 

We want to conclude this section pointing out that even though the method so far 
described was utilized to calculate one-layer PhCS structure, there are nor conceptual neither 
practical limitations to its application to multiple-layer devices. 

3. Fano resonance in isotropic photonic crystal slabs 

In this section, we will apply the SMM to analyze the light Fano resonance effect in two 
dimensional PhCS. 
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3.1 Fano resonance modes 

The PhCS described in this section is fabricated by c-Si with holes filled by SiO2 and insert in 
a sandwich of SiO2. The thickness of the slab is 0.5a, the radius of the holes is 0.15a, and a is 
the lattice constant. Throughout this paper, our model will consist of a square lattice. The 
refractive index of c-Si and SiO2 is 3.5 and 1.46, respectively. Relative permittivity is 1. We 
neglect any frequency dependence of Si and SiO2 dielectric function.  Light is incident along z 
direction which implies polarization degeneration. The transmission is shown at the top side 
of Fig. 2.  

 
Fig. 2. Three Fano’s resonances at 1.9871a, 2.0658a and 2.0841a are shown. In particular, the 
top graph shows the variation of transmission in the wavelength region from 1.9a to 2.2a. The 
bottom graph shows the energy P calculated in a unit cell of PhCS. The energy peaks 
correspond to wavelength values roughly in between T=0 and T=1. 

 
In the wavelength region of 1.9~2.2 a are present three Fano’s resonances. Each of them lives 
in a very narrow wavelength region, where the transmission changes greatly up to the 
maximum theoretical value of 1. The Fano resonance phenomenon is manifested by the 
presence of a discrete state coupled with a continuum of states.  The continuum of states 
corresponding to the background transmission [5], are the states of Si film without PhC 
structure. The discrete states are confined by SiO2 poles and Si film. The lower part of Fig. 2 
shows the curve of energy P for a unit cell of Si layer versus wavelength. It is defined by the 
relation 

                                           ( )1

2
D E B H* *

cell
P dV= ⋅ + ⋅∫                                                     (17) 

Because P is proportional to the energy stored in the cavity, it implies direct proportion with 
the quality factor Q. The constant relating the two quantities is defined by the amplitude of the 
electric field.  The peaks of energy indicate Fano resonances. They prove the presence of a 
discrete state in correspondence of the maximum of curve P. In Ref. [31] were found very 
interesting phenomena related to the asymmetry of Fano’s resonance. In particular, was 
concluded that the main feature of Fano resonance is the resonant reflection but not 
transmission. We have then tried to investigate further the difference between transmission 
deeps and peaks relating them to the energy distribution shown in Fig. 2. Unluckily, no clear 
relation was possible to obtain so that no definitive conclusion was reached. Anyway, we have 
to notice that the number of plane waves (197) utilized for the current simulation does not 
guarantee absolute convergence. Such a value is definitely enough for the general purposes of 
this paper, but probably not in finding a precise relation between transmission and energy 
distribution. 
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(a)                                                         (b)                                                        (c) 

 
   (d) 

Fig. 3. (a), (b) and (c) show the Sz distribution for each Fano resonance of Fig (2). 
The patterns cover four unit cells, which have a hole just in the center. (d) 
Distribution of the Poynting vector at the plane y/a=0.5, z≥0. 

 
The z polarization distribution of the Poynting vector at top interface plane is shown in 

Fig. 3(a), (b), and (c). The SiO2 pole is just at the center of the images. They correspond to the 
three peaks shown in Fig. 2. The scale in Fig. 3(b) highlights the presence of a sharp field 
distribution. It is because of the strong resonant electromagnetic field inside the cell. The 
periodic behavior of the Poynting vector is shown in Fig. 3(d). It is a section of half plane 
at 0 5y a .= , 0z ≥ in Fig. 3(a). Even though the energy current shows a double behavior, 
namely it travels along both positive and negative directions, for any cross section along z axis 
the total energy current remains positive. It is also evident how the periodicity is primarily 
stressed close to the surface. This is because the light in PhCS is not transmitted just along the 
z direction, but it consists of many contributes with G ẑβ+ wave number. For such a reason, 
some of them are reflected at the interface. However, light is able to penetrate deeply in SiO2 
material. 

Figure 4(a) shows the transmission spectrum for incoming light belonging to the x-z plane. 
The horizontal line indicates the incidence angle whereas the ordinate represents the 
wavelength. θ=0 corresponds to the incident beam parallel to the z axis. In the reciprocal 
space, scanning the incident angle from 0o to 80o means to look along ΓX direction. The top 
and the bottom graphs show s- and p-polarization, respectively. As expected, for acclivitous 
oblique incident light, the transmission spectrum starts depending strongly on the light 
polarization. This is because of the polarization degeneration breakdown due to the 
component of the k vector parallel to the x-y plane. When the angle θ is far from zero, such 
component is different from zero too, hence it can be shown that the two polarizations are not 
degenerate anymore. It is interesting to notice how a single Fano mode becomes, by tuning the 
wavelength, a continue line which from now on will be defined as characteristic line. It is 
indeed a peculiarity of the investigated system. 

 

x/a 

y/a 

x/a x/a 

x/a 

z/a 

Poynting vector 
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                                 (a)                                                                                              (b) 

 
Fig. 4. (a) Transmission spectrum of the incident light for s (top) and p (bottom) polarization. 
The incoming angle θ is from 0o to 80o, where zero means a beam parallel to the z axis. Narrow 
Fano resonances form several characteristic lines. (b) Relation between neff and incident light 
angle. Light is along ΓX direction. The dashed line denotes the X point, beyond which the 
mirror effect for neff  is shown. 

 
As previously shown, the energy is mainly confined inside the slab. It is because of the 

high Q-factor related to the quasi-guided mode, that manifests itself by means of Fano’s 
resonance. It explains why Fano resonance states are also called quasiguide mode [7]. Indeed, 
they are very similar to a guide mode in photonic crystal slab [8]. At the same time, the 
characteristic lines denote the photonic crystal slab band structure in the real space [10,11].  
Figure 4(b) remarks the interconnection between the z and in-plane components of the k 
vector. Indeed, because of both momentum conservation and slab periodicity, they are 
intimately related. In particular, the graph shows in ordinate the effective refractive index 
along z direction, neff=β/k0, and in abscissa the high symmetry direction ΓX defined in k space, 
where ( ) xsin k kθ = . Here k0=2π/λ, being λ the wavelength of the incident light. When kx 

exceeds the X point, the corresponding modes move to the contiguous Brillouin zone, so to 
realize a symmetric response. 

3.2 Controlling Fano resonance region by varying the slab refractive index 

Interesting and useful applications can derivate from the capability in controlling the Fano 
resonance wavelength. Indeed, because we can design very narrow Fano resonant regions, the 
possibility to change rapidly transmission (or reflection) is obtained by minor shifts of the 
wavelength. The tool which allows us to modify the wavelength position comes from tuning 
the PhCS index. Such operation on Si can be actuated by carries injection [17]. This method is 
already applied in optical crystal switches [18] and M-Z modulators [5].  

Fig. 5(a) shows the transmission and reflection spectra at θ=0 with the Si refractive index 
being tuned at different frequencies. It is evident that Fano resonance peaks move to shorter 
wavelengths by decreasing the Si refractive index. Same behavior is present in PhC too, in 
fact when a reduction of the mean refractive index occurs the bands shift to higher frequency 
regions. Figure 5(b) illustrates the transmission (reflection) variation ΔT (ΔR) when acting on 
the refractive index and wavelength. Its analytical expression assumes the form ΔT=T(n0+Δn)-
T(n0), n0 is refractive index of Si. Of course, when Δn=0, also the transmission variation must 
be equal to zero, as shown in the image. Beside it, fixed the wavelength at Fano resonance 
values, it is possible to get transmission (reflection) variations close to one. The narrower is 
the Fano peak, the more sensitive is the answer of the system. Such characteristic can be 
applied for the realization of optical switches. Moreover, the line width of Fano resonance 
modes depends on the coupling grade between discrete and continuum states. The weaker is 
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the coupling, the narrower is the line width. However, the coupling strength can be controlled 
by the filling ratio of the materials. For example, by reducing the radius of the holes, the line 
width ends up to be narrower (See Fig. 12 in Ref. [6]). 

 
                                 (a)                                          (b) 

 
Fig. 5. (a) Transmission and reflection spectra calculated at θ=0. The sharp lines show Fano 
resonances. The reduction of Si refractive index shifts the resonance lines to shorter wavelengths. (b) 
Transmission and reflection variation spectra. ΔT and ΔR are defined as T(n0+Δn)-T(n0) and 
R(n0+Δn)-R(n0). At Fano wavelengths strong changes of T and R are possible. Variation range of Si 
index is from 0 to -0.01. The range of wavelength is from 1.97a to 2.12a. 

 

3.3 Enhancement of the first order scattered light: Wood’s resonant effects 

 PhCS are grating structures. Inside of them light follows different paths, so that reflection and 
transmission result from their combination. The number of scattered beams is in relation with 
both the lattice constant and the refractive index of the slab materials. Indeed, because of the 
periodicity of the system, some requirements regarding the light propagation must be satisfied. 
In particular, in material composed by uniform and periodic structures, by means of the Bloch 

theorem results ( )2 2 2k G// zk k+ + = , 1 2G G Gm n= + , being k// defined on x-y plane, and G 

the reciprocal primitive space vector. Such equivalence is determined by both the lattice 
constants (G1 and G2) and the refractive index of materials (k=nk0).  

In Figs. 6 we fix the wavelength at 1.5a, with the incident light on the x-z plane. The 
electric field is assumed to have y polarization. The 0th (S0) and 1st (S1) orders of the scattered 
light are shown. A scanning of Si refractive index n was performed. In particular values of Δn 
from -0.001 to -0.009 were chosen.  Abscissa shows the incident light angle θ. Dot and solid 
lines represent 0th and 1st order scattered light, respectively. When the refractive index 
variation is equal to -0.005 and incident angle around 20.8o, the transmitted light -Fig. 6(b)- is 
almost fully associated with S1 mode. Moreover, the light direction is along –x axis, giving the 
false impression of negative refraction. In reality, the coupling between the first order of the 
scattered light with the quasi-guide modes and the Rayleigh phenomenon are responsible for 
such effect [19-33]. Evident high sensibility results from the simulations. In fact, small 
changes of either refractive index or incidence angle produce different light distributions. 
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                  (a)                                                       (b)                                                                     (c) 

 
                                                   
                                                        (d)                                                                     (e) 

 
Fig. 6. (a) Sketch of 0th and 1st order scattered light directions. Incident light, 0th, and 1st order 
scattered light are denoted by heavy, dot and thin line, respectively. (b) Power flux spectrum of 0th 
and 1st order transmitted light. Dot and solid lines represent 0th and 1st order transmitted light, 
respectively.  (c) Power flux ratio between 1st and 0th order transmitted light. (d) and (e) describe the 
reflection case. Figs. (b), (c), (d) and (e) consist of five graphs each, corresponding to variations of 
Si refractive index in the interval [-0.001, -0.009]. 

 
Figure 6(c) shows the ratio of transmitted light amplitude between the 1st and 0th order 

Poynting vectors. Maximum ratio value is approximately 250. It has strong dependence on the 
0th order S0. Indeed, looking for example at the first graph in Fig. 6(c), two peaks emerge. 
They correspond to the two S0 minimum in Fig. 6(b). The two peaks move vis-à-vis by 
increasing Δn. The reflection spectra are shown in Fig. 6(d) & (e). The maximum ratio 
between the 1st and the 0th order reflected Poynting vectors occurs at Δn=-0.007 and incident 
light angle equal to 21.15o. 

4. Light transport in anisotropic photonic crystal slabs 

In section III we have shown Fano resonance modes in Si/SiO2 isotropic PhCS and how to 
control them by acting on the slab refractive index. In this section we will give an example, 
KTP (Potassium Titanium Oxide Phosphate), to show how the Fano resonance modes can be 
controlled inside anisotropic materials. 

4.1 Transmission spectrum of KTP anisotropic PhCS 

KTP is a well known anisotropic material. The dielectric constant is depicted as function of 
both wavelength and temperature [34]: 

  ( ) ( ) ( )
( ) ( )
2

2 2 2 2

2 2

400
400 400

400

i i

i i i i i

i i

b T
n ,T a T d T

c T

δ
λ β λ ρ

λ φ

+ −
⎡ ⎤= + − + − + −
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where i=1,2,3. Each i value defines an element of the dielectric constant 

tensor
1

3

2

0 0

0 0

0 0

ε
ε ε

ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. Here ε1, ε2 and ε3 are parallel to x, z and y direction, respectively. 

All the coefficients appearing in Eq. (18) are the same as in [34]. 
The structure is made out of KTP and follows the pattern of Fig. 1. The air holes have 

diameter 0.3μm, lattice constant is 1.0μm, slab thickness 0.6μm and insert in a sandwich of 
SiO2. The incident light is assumed to be parallel to the z axis. Because of the transversal 
property of the electromagnetic waves, both E and H belong to the x-y plane. 

Be φ the angle between E and x axis. Figure 7 shows transmission (top) and reflection 
(bottom) depending both on φ and the wavelength λ of the incident light. When the angle is 
zero, meaning polarization along x axis, two strong Fano resonances are present. Increasing 
the angle increases the number of Fano modes too, up to the maximum of four at φ=45o. At 
the same time their intensity decreases. This situation corresponds to E being in between x and 
y axis. A further increase of φ, up to 90o, re-establish the original situation of two sharp Fano 
resonances but shifted in frequency respect to the case E//x. From 90o to 180o symmetrical 
behavior is shown. In the end, Fig. 7 seems to show that the sharpest Fano modes do exist 
when the electric field is parallel either to x or to y axis. 

 

 
Fig. 7. Transmission (top) and reflection (bottom) spectra for different incident 
polarizations. φ is the angle between electric field angle and x axis. 

 
Figures 8(a) and (b) show the dependence of Fano wavelengths on temperature for 1μm thick 
KTP slab. The graphs are associated to light polarization along y and x directions, respectively. 
Each graph consists of ten curves which denote the temperature increase from 20˚C to 200˚C. 
Fano resonances move along the wavelength axis when the temperature is increased. The dot 
line traces the Fano resonance behavior on the wavelength-temperature plane. By plotting the 
Fano resonant wavelength 2

Fλ  versus T2-400, as indicated in Fig. 9, a linear behavior is 

obtained. The curves analytical expression is ( )2 2 2
0 400F Tλ λ η= + − , where 0 1 6311.λ = , 

74 98127 10.η −= × for s-polarization (E//x-y plane), and 0 1 6278.λ = , 75 1744 10.η −= × for p-
polarization (E//x-z plane). λF is the Fano resonance wavelength. Such a behavior is consistent 
with the results of Fig. 5, where linear relation between refractive index and wavelength is 
shown in the case of isotropic PhC slab. Indeed, according to Eq. (18), refractive index is 
proportional to temperature, namely there is a direct proportion between refractive index and 
wavelength for KTP slabs too. 
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(a) (b) 

 
Fig. 8. (a) and (b) show transmission spectra at varies temperatures for E//y and E//x, respectively. 
The differences are due to the anisotropic nature of KTP.  Each graph consists of ten curves. 
Temperature is increased from 20˚C to 200˚C with constant steps of 20˚C. The dot line shows the 
relation between Fano resonance wavelengths and temperature.  

 

 
Fig. 9. Fano resonant wavelength λf versus temperature. The graph shows linear dependence of 
λf

2 with T2, namely linear relation between λf and temperature. In abscissa is plotted T2-400 to 
be consistent with Eq. 18. 

 

5. Conclusion 

We have presented an approach for the extension of the Scattering Matrix Method to describe 
the optical behavior of anisotropic materials.  Such a method was utilized to investigate Fano 
resonances in Photonic Crystal Slabs (PhCS). It was shown that in a situation of Fano 
resonance, Fano resonant modes present narrow line width.  

 The Fano wavelength shift is polarization independent. However, it can be obtained 
acting on the slab refractive index. For example, the refractive index of Si can be changed by 
electrons injection. When the Fano wavelength shift occurs, transmission and reflection 
spectra shift occur too. We have found that appreciable wavelength variations are possible for 
small refractive index change (Δn=-0.01). Also the scattering light can be controlled. The 
process is so efficient that only the 1st order scattering contribute can be selected. Interesting, 
such a contribute looks like negative refraction. For anisotropic materials, Fano resonant 
wavelength shift is still polarization independent. The example of KTP crystal was introduced. 
It is defined by a refractive index which is temperature sensitive. In particular, in our structure, 
the Fano resonances steps-up to longer wavelengths by increasing the temperature. Because of 
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its sensitivity, KTP can be utilized for applications where high definition temperature control 
is an issue.  
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