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ABSTRACT

In-memory computing based on nonvolatile synaptic arrays with computing functions has significantly improved the computing
energy efficiency of neural networks. However, current synaptic devices are mostly limited to accelerating matrix-vector
multiplication operators, and the differentiated requirements for device characteristics in the training/inference stage have led
to a sharp increase in the integration complexity of hybrid synaptic units. Hence, for low-precision quantization calculations
of networks, a compact synaptic unit based on ionic nonvolatile memory-transistor coupling integration, which enables in
situ approximate weight quantization without additional binary programming while maintaining parallel MVM computing
capabilities, is developed. Results show that the quantization function, derived from the cell’s physical electrical properties,
achieves classification accuracy in binary neural networks comparable to the ideal quantization function. This approach supports
low-precision continual learning, mitigates catastrophic forgetting, and enables efficient computations for binary/ternary large
language models. At a 4 Mb array scale, ECRAM- and RRAM-based units achieve energy consumption advantage of 25.51x and
4.84x%, respectively, over traditional digital platforms, offering a robust in situ quantization framework for low-precision edge
training.

1 | Introduction recognition [7, 8], and autonomous decision-making [9-11]. By

continually increasing the depth and size of the deep neural
Recently, with rapid progress in deep learning (DL), a range of ~ network (DNN) models, DL will even outperform the human’s
complicated tasks have been incredibly resolved, such as image  levelinsome cognitive tasks [3,12]. However, exponentially grow-
classification [1-3], natural language processing [4-6], speech ing network parameters impose unsustainable hardware resource
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and power demands, particularly for edge-based data-intensive
applications [13-15]. In conventional computing systems, fre-
quent data transfers between memory and processing units
further degrade energy efficiency, posing a critical bottleneck for
scaling future models [16, 17].

To address the trade-off between massive parameters and limited
computing power, brain-inspired computing-in-memory (CIM)
architectures leveraging emerging nonvolatile memory (eNVM)
devices have been proposed to improve energy efficiency in DL
applications [18]. By integrating these eNVM devices into the
crossbar arrays, matrix-vector multiplication (MVM) based on
electrical principles can be physically in situ conducted without
frequent data movements, which has been broadly utilized
to accelerate the neural network inferences by mapping the
weights into device conductance [19-21]. However, modern high-
performing DNN models often rely on high-precision parameters
(e.g., 32-bit floating-point), demanding complex computations
and large memory capacity [22]. For most eNVM devices, such
as resistive random-access memory (RRAM) [23-26], phase-
change memory (PCM) [27-29], magnetoresistive random-access
memory (MRAM) [30, 31], and ferroelectric tunnel junction
(FTJ) [32-34], the limited number of conductance states require
adjusted weight quantization. Although some researchers have
proposed more advanced programming method to significantly
enhance storage state numbers in single devices [21, 35], low-bit
weight quantization in hardware employment is still necessary.
As demonstrated in Figure 1a, for the limited computational and
memory resources in edge platforms, such as mobile phones
and embedded devices, neural network quantization, in which
original floating-point weights are represented with highly low
precision while keeping performance degradation extremely low,
has been utilized to compress the model size [36]. By quantizing
the neural network weights into 1-bit precision, which is also
termed as binarization, a recent study replaced the heavy MVM
operations well with bitwise XNOR operations and bitcount
operations, and realized up to 32X memory saving and 58x
speedup on CPUs [37].

As shown in Figure 1b, the integration of CIM architecture
with hardware-friendly binary neural networks (BNNs) utilizes
two distinct arrays to store different precision weights: real-
valued analog and quantized binary weights [36]. For edge
applications in adapting to complex environments, frequent
neural network finetuning is necessary, which requires lots of
quantization operations during online training. This process
demands simultaneous storage of both weight types due to quan-
tization’s irreversible nature. However, hardware quantization
still involves abundant data transfer between analog memory
arrays and digital processing units, as well as between digital units
and binary programming arrays, incurring additional energy and
latency overheads [38]. Although in situ MVM has been realized
by adopting CIM architecture, plenty of weight quantization
computation and low-precision programming operations, which
dominate in neural network quantization algorithms, are still
performed separately due to the lack of in situ physical operators
of quantization function in the CIM paradigm [39].

Many works about on-chip implementation of BNN focus on the
inference stage, by mapping the trained weights into CIM arrays,
but few take account of enhancing low-precision neural network

training efficiency [36, 37]. For the hardware implementation
of training low-precision neural networks, such as BNN, D.
Shang et al. proposed a hybrid analog-digital hardware system
equipped with an RRAM chip to deploy a mixed-precision
continual learning (MPCL) model [40]. In their MPCL hardware
employment, binary weights are represented by the normalized
conductance of RRAM differential pairs while high-precision
floating-point weights and related operations are carried out on
the general digital processor. Through in situ MAC accelerations
in the RRAM CIM arrays, about 200X energy consumption has
been reduced during the inference phase compared with the
conventional digital systems, but separate storage of different-
precision weights still limits their online training efficiency, and
the RRAM-digital mixed storing methods are broadly adopted in
other works about BNN online training [36, 41]. To solve the sepa-
rated weight transfer issues, Martemucci et al. proposed a hybrid
FeRAM/RRAM synaptic circuit to enable on-chip inference and
learning of BNN, utilizing the excellent writing characteristics
of FeRAMs and the nondisruptive reading capability of RRAMs
[38]. Nevertheless, extra binary programming and low-precision
reading for performing ex situ inference are still needed, and the
large footprint of FeRAM consumes significant chip area.

Electrochemical random-access memory (ECRAM), a three-
terminal eNVM with metal-oxide-semiconductor field-effect
transistor (MOSFET)-like structure, has emerged as a promising
synaptic device for artificial neural network (ANN) accelera-
tors [42-47], whose conductance can be accurately regulated
through electrochemical ionic doping and dedoping processes.
In contrast to conventional two-terminal memristive devices,
ECRAM enables multi-state programming in a more linear
and symmetrical manner, accompanied by low variability and
highly deterministic tuning characteristics. Owing to its nearly
ideal conductance programming attributes, ECRAM exhibits
significant potential in addressing the challenges associated with
on-chip training of ANNs.

In this study, we aim to address the inefficiency of separate
data handling in low-precision DNN quantization within con-
ventional CIM architectures. Based on the superior linear and
stable programming characteristics of WO,-ECRAM, we develop
an analog-binary weight transfer unit called memory-transistor
transfer (MTT) unit, enabling in-situ approximate quantization
without extra binary programming while preserving parallel
MVM capability in CIM-like arrays. The weight transfer functions
are also systematically explored under the impacts of different
bias conditions. Furthermore, compatible programming and
inference schemes of MTT-based arrays were developed and
experimentally demonstrated to verify the availability. The neural
network testing results reveal that the quantization function
derived from the inherent physical electrical properties of the pro-
posed cell architecture maintains classification accuracy in binary
neural networks on par with the ideal function. This approach
facilitates low-precision continual learning model computations,
effectively mitigating the catastrophic forgetting problem inher-
ent in conventional neural networks and enabling efficient
computations for binary/ternary large language models (LLMs).
At a 4 Mb array scale, the ECRAM-based and RRAM-based
quantization units exhibit significant enhancements in energy
consumption, achieving improvements of 25.51x and 4.84X,
respectively, over traditional digital platforms in quantization-
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FIGURE 1 | Insitu quantization for edge computing based on MTT unit. a) A schematic diagram of the weight quantization of neural networks

deployed at the edge, aimed at accommodating limited computational and storage resources. b) During the network quantization-aware training process,

data needs to be transferred between two weight storage arrays with different precision frequently, where the access reads, quantization computations,

and low-precision programming contribute significantly to the additional latency and energy consumption. ¢) The context of this article is based on novel
non-volatile memory devices leading to the proposed memory-transistor transfer unit, as well as the array operations and reading methods based on this
unit structure, including the final application of network algorithms. d) The relevant applications addressed in this paper include lightweight network

models for edge deployment, metaplasticity-inspired continual learning models, and large language models based on low-precision quantization.

related computation and storage. This advancement offers a
highly energy-efficient in situ quantization computing frame-
work for low-precision network training in edge computing
environments.

2 | Results and Discussion

2.1 | Characteristics of ECRAM Used in MTT
Units

High-performance memory devices with minimal programming
stochasticity and high endurance are essential for reliable weight

conversion in MTT units. In this work, we use ECRAM as hidden
weights, where conductance modulation enables indirect control
of the inference transistor’s linear region resistance, facilitat-
ing weight conversion and in situ approximate quantization.
Figure 2a shows the fabricated ECRAM array (fabrication details
in Figure S1 and the Experimental Section). An additional SiO,
layer is employed to isolate the gate line from the drain line,
preventing short-circuiting between the two. The device structure
(Figure 2b) features: (1) a WO, channel with tunable band
structure via ionic doping, (2) lithium phosphorus oxynitride
(LiPON) solid electrolyte, in which abundant moveable Li ions
can be controlled by the gate voltage, and (3) an SiO, passiva-
tion layer fabricated along with LiPON protecting LiPON from
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FIGURE 2 | Characterization of ionic regulation mechanisms within ECRAM. a) SEM image of the ECRAM array, which contains nine independent
ECRAM devices that can be programmed and read by different gate, drain, and source lines. Scale bar, 50 um. b) EDS distribution map of the layers in
the core region of the ECRAM device. Scale bar, 100 nm. c) 3D SIMS distribution for Si, Li, and N elements when Li ions were intercalated into a
channel layer. d) Comparison of Li spatial distribution for ECRAM at different states. e) SIMS depth profiles for the ECRAM in low-resistance and
high-resistance states, where the yellow and blue backgrounds represent the LiPON and WO layers, respectively. f) HRTEM image of the WO, layer
and the corresponding diffraction pattern extracted by fast Fourier transformation for the yellow rectangular regions, the scale bar for the two images
are 2 nm and 10 nm~!, respectively. g) The transformation from crystalline structure to amorphous structure of WO, by using molecular dynamics. h)
The density of states (DOS) of amorphous WO, after Li element doping. The Fermi level is set to zero. i) Projected DOS of W and O elements in panel

(h). j) Energy changes of Li ions during migration.

ambient degradation (elemental analysis in Figure S2a,b). Time-
of-flight secondary ion mass spectrometry (TOF-SIMS) analysis
is utilized to better reveal the spatial distribution of Li ions (see
the Experimental Section for experimental details). As shown in
Figure 2c, the three-dimensional (3D) spatial distribution of Si,
Li, and N elements can be well visualized, and a large number
of mobile Li ions are the basis of ECRAM programming. A more
intuitive comparison of Li element distribution within ECRAM of
different conductance states can be seen in Figure 2d, showing the
Li ions are more concentrated near the channel region when the
ECRAM is at higher conductance states. The SIMS depth profile

along the gate stack is shown in Figure 2e accordingly, where
many Li ions will be driven to the WO, -based channel and results
in the depletion at the upper region of the LiPON electrolyte.

To reveal the ionic modulation mechanisms in the ECRAM
programming more clearly, the first-principles calculations are
performed based on the characterization data. Different from
the previously used crystalline material in the ECRAM channel
[44, 48], the WO,-based channel is produced by the reactive
sputtering without subsequent annealing to simplify the process
flow and reduce the thermal budget, so its amorphous structure
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will be kept, verified by Figure 2f and Figure S2c,d. Therefore,
we first generate an amorphous WO, cell model through the
rapid quenched molecular dynamics, with construction process
depicted in Figure S3a. The process mainly includes four stages,
that is initialization, melting-diffusion, quenching and relax, and
the changes in the final microstructure are compared in Figure
S3b. The WO, structure (Figure 2g) is obtained to conduct the
following electronic structure calculations, whose isotropy can
help improve uniformity during ionic doping. Then, the density
of states (DOS) of the Li-WO, system is calculated, and the results
are shown in Figure 2h, in which the Fermi Level is located at the
conduction band. These results, compared with Figure S4a, show
that Li ions lead to n-type doping in WO,. The projected DOS in
Figure 2i reveals that the main contributions to the conduction
band are from W, and O,, electrons. As shown in Figure S4b,c,
the DOS with the Li ion at different site are both similar to the
results in Figure 2h, which accords the isotropy of the amorphous
WO,. The migration energy barrier for Li ions in the WO, matrix
is shown in Figure 2j, whose maximum barrier is only 0.8 eV,
which indicates the Li ions can be easily doped into the WO,
without excessively high gate voltage, which is critical for low
supply voltage applications.

Under the guidance of the electrochemical ion doping mecha-
nism, the channel conductance can be well controlled by the
gate voltages, where doping and dedoping are realized by the
direction of the electric field. The basic transfer characteristics
of the ECRAM under 50 continuous cycles are illustrated in
Figure 3a, with switching principle shown in the inset. The
channel conductance increases under positive sweeping, while it
decreases at negative sweeping region, and an average switching
ratio with gate voltage at 0 V reaches 56. Besides WO,, amorphous
NbO, can also be utilized [49, 50] as ECRAM channel for its
outstanding stability and electronic tunability. However, for the
more stable nonvolatility in serving as hidden weights in MTT
units, we finally choose WO, as the ECRAM channel material.
The relationship between the formation energy of interstitial Li
defects and Fermi level for NbO, and WO, systems are compared
in Figure S5, and the lower overall formation energy in WO, helps
improve the stability of doped Li ions.

Furthermore, the size effects on the characteristics of ECRAM are
explored in Figure 3b and Figure S6. The device on-state current
can be enhanced by widening or shortening core areas, owing to
the uniform ionic doping over the channel region, and the overall
conductance G,, can be well expressed by:

Gon =8— (1)

where g is proportional to the on-state conductivity under the
ionic doping, which is almost the same for devices of different
sizes, and W and L denote the width and length of device core
region, respectively. This provides guidance for choosing proper
device sizes under the maximum on-state current requirement.
In addition, as shown in Figure S7, the switching window can
be enhanced either by increasing the sweeping intervals or by
increasing the sweeping amplitudes, indicating that the electro-
chemical doping is a gradual process in which ion migration is
mainly driven by electric field.

Pulse-based programming, whose basic operation is diagrammat-
ically depicted in Figure 3c, with source grounded and drain
monitored by 0.1 V bias voltage, positive and negative program-
ming pulses are implemented at the gate, which corresponds to
potentiation and depression of ECRAM, respectively. The typical
180-cycle long-term potentiation and depression programming is
demonstrated in Figure 3d, in which 10 V/2 ms and —7 V/2 ms
pulses are used to write and erase, respectively. Different from
the common programming stochasticity in two-terminal non-
volatile memory devices, especially for filament-based RRAM,
100% switching accuracy can be ensured in ECRAM, in which the
conductance changes during each pulse are shown in Figure 3e.
The high switching accuracy helps improve the programming
efficiency, which is critical to the edge applications. In addition,
by adopting the fitting model from the work of Chen et al.
[51], the statistics of linearity in the conductance updating
are concluded in Figure 3f, demonstrating excellent uniformity
during the 180-cycle updating. More systematic results of pro-
gramming sensitivity under different amplitudes and widths of
the programming pulse are illustrated in Figure 3g,h, and we
developed a write-verify scheme based on the increasing pulse
amplitude accordingly to accelerate conductance convergence,
whose flowchart is shown in Figure S8. In addition to the device
programming in training, the retention of different states is
important in inference, with the results shown in Figure 3i. It
should be noted that the nonvolatility of the hidden weights
also ensures that of the inference weights in the proposed MTT
units. As shown in Figure 3j, the ECRAM reached a high
switching ratio of 632 with updating process and applied pulses in
Figure S8, which enables binary quantization fitting in the MTT
unit. Another key characteristic of the memory device used in
online training is ultrahigh endurance. Thanks to the reversible
dynamic ionic doping and dedoping, the damage to the lattice
structure can be negligible during repeated programming, and
more than 10® pulse endurance is shown in Figure 3k. Detailed
programming by ps-level pulse stimulation can be found in
Figure S9a, and the evolution of maximum conductance changes
and linearity fitting parameters during the whole programming
in Figure 3k are demonstrated in Figure S9b,c, respectively.
In addition, conductance updating processes in the endurance
tests for the first 16x10° pulses and the last 16x10° pulses are
compared in Figure S10, indicating that the ECRAM can keep
excellent performances during the endurance tests. The above
characteristics of the ECRAM ensure this kind of analog memory
device is highly appropriate to serve as hidden weights in the
following discussed MTT units.

2.2 | Weight Transfer Functions in MTT Units

The excellent analog programming characteristics discussed
above ensure highly efficient weight mapping in the MTT units.
As the theoretically derived model in Figure Slla, the symmetrical
structure is adopted to form a differential weight unit. It should be
noted that reference resistors denoted by yellow rectangles with
conductance Gy, is used to simplify model derivation, though
they are implemented by transistors with fixed gate voltage in
actual circuits. We consider the resistance value Ry, of the
reference resistors to be 1. The purple variable resistor represents
the analog memory device, and the transistors whose gates are
controlled by the voltage division between the variable resistors
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FIGURE 3 | Characterization of the basic properties of ECRAM. a) Transfer characteristics of the ECRAM under 50 continuous cycles, with a

maximum scanning voltage amplitude of 8 V for both positive and negative regions, yielding an average switching ratio of 56 at a gate voltage of 0 V. b) The
on-state current of ECRAM in different sizes, including different lengths and widths. ¢) Schematic diagram of the basic operations of the ECRAM device,
illustrating the doping and de-doping of the channel by mobile ions in the electrolyte, controlled by the electric field applied between the gate and the
channel. d) Variation of long-term potentiation and depression during 180 continuous cycles, where the potentiation and depression pulse amplitudes are
10 and -7V, respectively, each with a width of 2 ms. e) Statistics of conductance variation for each programming pulse during potentiation and depression.
f) The distribution of fitting parameters of programming linearity for both potentiation and depression. g-h) Statistical data on the potentiation and
depression of ECRAM conductance under different programming pulse amplitudes and widths. i) Retention characteristics of 16 different states of the
ECRAM, with a channel read voltage of 0.1 V. j) Statistical data on the high switching window of the device during continuous conductance modulation,
achieving an average ratio of 632. k) Endurance test for over 10% programming pulses, showing no device degradation during these pulse stimuli, with
specific details demonstrating the conductance modulation characteristics of the device after 104, 10°, 10°, 107, and 108 pulses.
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and fixed resistors provide the binary inference weights, realizing
the purpose of in situ weight transfer.

Considering V7 to be the threshold voltage of the transistors used
in MTT units and their transfer characteristic described in the
Experimental Section, the hidden weight reading bias voltage
Viyead_n is set as 2 X Vp. The reading bias voltages applied at
the drains of the inference transistors, whose conductances are
denoted by G , and G __, are 0.1 and —0.1 V, respectively. Thus,
the final binary inference weight Gy is the difference between the
two, that is:

Gp = GB+ - Gp_ @)

For the mapping and programming of the analog hidden weight
W, when W), > 0, negative analog memory device G, _ will be
immediately programmed to R, then G, _, will be programmed
to the corresponding values according to a linear mapping
relationship. When W), < 0, positive analog memory device G,
will be fixed at value 1, then we will program the negative
analog memory device. The final analog conductance G, can
be expressed as max{G, ., G, _}, and the quantized hidden
conductance Gy can be written as:

G,-G
A—Ref, W, >0
o — K X Ggyy .
7] =G4 + Grey
— Y WwW,<0
K X Ggyy h

Here, K is a scaling factor constraining Gy to [—1, 1], effectively
representing the dynamic range (on/off ratio) of the analog mem-
ory device. Due to the MTT unit’s symmetrical design, Figure
S11b shows how the binary inference weight G relates to the
quantized hidden conductance Gy, for varying K. Larger K values
make this relationship approximate an ideal binary quantization
function. The electrical behavior of the devices translates this to
a functional mapping between binary inference weight W, and
analog hidden weight W), as follows:

2 w_05 W, >0
W KxW,+2 ) "h= @
o o (KXWt o5 w <o
—KxW,+2 ) 7h

By varying K, the weight transfer functions are shown in Figure
Slic. As before, larger K values make the function approach an
ideal Sign function for binarization. However, practical device
programming faces trade-offs: excessive dynamic range degrades
device performance, necessitating a balanced operating range
that preserves quantization accuracy. To evaluate this, we test
different K values in a continual learning neural network model
[52] inspired by synaptic metaplasticity (simulation details are
described in the Experimental Section). Results (Figure S11d-f)
show that continual learning performance saturates at K > 20,
suggesting this as the optimal lower bound for subsequent weight
transfer studies.

When the hidden weight reading bias voltage V.4 1 is below 2
X Vr, the inference transistor operates in the subthreshold region

at low analog memory conductance. As simulated in Figure S12a,
this creates a zero-gradient interval (with half its length defined
as the radius). Figure S12b shows the abstracted weight transfer
function under different radii, while Figure Sl2c-e presents
the corresponding network performance. Under lower V. g,
larger radii exacerbate deviations from the ideal Sign function,
degrading performance, which likely results from constrained
hidden weight updates in the subthreshold regime. Thus, V.4 y
should exceed twice V; to ensure robust binary quantization.

The MTT unit can alternatively employ an asymmetric differ-
ential structure (Figure S13a). A potential advantage of this
configuration is the consistency of the two analog hidden weights
during weight mapping. The quantized hidden conductance Gy
is then determined by the analog conductance G, through the
following relationship:

GA - GRe f

O = KX Cry ®

where all the parameters are the same as before. With the hidden
weight reading bias voltage set to 2 X Vi, electrical charac-
terization (Figure S13b) reveals the asymmetric weight transfer
function between binary inference weight Gp and quantized
hidden conductance G, across different on/off ratios. The derived
mathematical relationship is:

_ KxWwW,
Yo = KXW, +2% G O
where we set G, at 50 for convenience, and the specific function
graph is shown in Figure S13c. The asymmetry between positive
and negative weight transfer functions intensifies with larger
operating ranges, even saturating even when W, gets close to
1, which results in significant deviation from the ideal Sign
function. Network-level performance tests (Figure S13d-f) con-
firm this limitation. While the asymmetric MTT unit eliminates
hidden weight programming identification, its poor binary quan-
tization fidelity renders it unsuitable for in-situ weight transfer
applications.

In experimental implementation, we replace the reference ele-
ment with a transistor biased at constant gate voltage (V,.; ¢ =
0.6 V) for CMOS compatibility and operational flexibility, while
also improving the weight transfer function’s dynamic range.
Figure 4a,b shows the measured relationships between ECRAM
conductance G, and inference transistor current I;; at V,,y y =
1.4 V, with experimental setups illustrated in insets. Figure 4c
presents the multi-cycle binary weight W, versus quantized
hidden weight W), relationship, with quantization details in the
Experimental Section and parameter distributions shown in the
inset. This leads to the generalized model:

5 A, X W, +1 0s) woso
x| =F———-05]), >
B, X W, +2 "
Wy = @)
) M_05 W, <0
B, xW,+2 ) 7h

where A,, B,, A,, and B, parameters take the similar role
of K, indicating the effective operating dynamic range for the
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FIGURE 4 | The performances under different biases for MTT units. a,b) The relationship between ECRAM conductance and the channel current
of the inference transistor under positive and negative bias conditions, respectively. The hidden weight bias voltage is set at 1.4 V, with the gate voltage of
the reference transistor set at 0.6 V. The positive and negative read voltages at the drain of the inferred transistor are set at 0.01 and —0.01 V, respectively.
c) The relationship between the quantized hidden weights and the binary weights corresponding to (a) and (b), with the inset showing the distribution
of the fitted parameters under different cycle stimuli. d) Parameter fitting results for the weight transfer function of the MTT unit at different hidden
weight bias voltages and gate voltages of the reference transistor. e) Relationships between the quantized hidden weights and the binary weights in the
MTT unit, with the hidden weight bias voltage fixed at 1.4 V and varying gate bias voltages of the reference transistor. f,g) Statistical data on the positive
and negative relationships between the conductance of ECRAM and the channel current of the inference transistor among the 64 different MTT units,
with the inset displaying the distribution of the corresponding fitted parameters. h) The relationship between the quantized hidden weights and binary
weights in the RRAM-based MTT unit, with the fitted curve indicated by the solid line in the figure.

memory device. Figure Sl4a-c shows the transistor characteris-
tics, where linear region operation is crucial for analog processing
since inference transistor conductance is not purely binary. To
systematically study the weight transfer function, we varied
Vyer g and V.., ¢ while fixing maximum device conductance at
40 pS. The resulting fitting parameters (Figure 4d, Figure S15)
reveal consistent trends: lower V., ; and higher V.4 4 pro-
duce better approximation of ideal binary quantization. Notably,
replacing the reference transistor with a fixed resistor (Figure S16)
yields transfer functions insensitive to bias voltages, with nearly
identical fitting parameters across all tested dynamic ranges

(Figure S16f). Figure S14d,e shows enhanced scaling factors in the
reference-transistor-based MTT unit, particularly at high V.4 5
The nonlinear channel resistance increase with drain-source bias
(Figure Sl4c) accelerates node voltage rise, causing faster transfer
function saturation as |W,| approaches 1. This nonlinearity
effectively expands the dynamic range, reflected in the fitting
parameters. Parameter pair consistency (A,, B,) and (4,, B,) in
Figure S14f ensures transfer symmetry. Reducing V., ¢ lowers
overall channel conductance, including the minimum memory
device conductance (equal to reference transistor conductance
at V’e“%), thereby enhancing dynamic range under fixed upper

8 0f 20
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limits. Figure S17 shows the ECRAM conductance-current rela-
tionship across V., ; values, with corresponding weight transfer
functions in Figure 4e showing excellent model agreement. While
lower V,,; ; improves Sign function approximation (crucial for
BNNs), it demands higher switching ratios, requiring trade-offs
between fitting accuracy and programming efficiency. Uniformity
tests across MTT units (Figure 4f,g, Figure S18a,b) demonstrate
consistent weight transfer functions, enabling low-variation array
implementation. Notably, Figure S18c,d reveals a near-linear rela-
tionship between transfer parameters and maximum operational
range.

While ECRAM serves as an excellent analog hidden weight in the
MTT unit due to its superior programming characteristics, the
concept can be extended to other nonvolatile memory devices.
RRAM, a two-terminal memory technology, has gained promi-
nence in Al inference chips for its CMOS compatibility, high
density, and compute-in-memory potential [53, 54]. However, its
stochastic and nonlinear programming behavior has limited its
adoption in edge training, despite device-level improvements [55].
Here, we explore RRAM-based MTT units to broaden hidden
memory device options. Figure S19a shows DC switching char-
acteristics of TaO,-based RRAM devices, exhibiting filamentary
switching [56]. The RRAM-MTT unit (Figure 4h inset) uses
the 1TIR intermediate node voltage to control the inference
transistor, while the reference transistor modulates RRAM analog
switching. Multi-state programmability (16 states, ~75 on/off
ratio) is demonstrated in Figure S19b-e. Despite excellent analog
switching, RRAM suffers from nonlinear read behavior (Figure
S19f), particularly at high resistance states under large read
voltages, which can disrupt stored states. Unlike ECRAM’s linear
resistance (Figure S20), RRAM requires careful selection of
Viead 1- FOr Vipgq y = 0.8 V and Vs ¢ = 0.7 V, the RRAM-
inference transistor current relationship yields a weight transfer
function (Figure 4) with fitting parameters >50, meeting transfer
requirements. In advanced CMOS nodes with lower threshold
voltages, RRAM performs well even with V,,,4 ; at 0.2 V and
Vyer g at 1.2V, as validated in Figure S21c-e.

2.3 | Basic Operations for MTT-Unit-Based Arrays

In addition to the static weight transfer function of different
hidden memory device states, dynamic programming and reading
operations are also important in MTT units. To reduce hardware
overhead, the reference transistor will be utilized as the selector
in array-level programming. However, for conventional ECRAM-
selector-based arrays, the selector transistor is mostly connected
to the gate terminal of ECRAM [50], which is termed as vertical
1E1T unit (Figure S22a). In this unit, by controlling the switching
of the selector transistor, the programming signal can be applied
to the ECRAM or not. The selector transistor can also be con-
nected to drain/source terminal of the ECRAM (Figure S22b), and
we call this horizontal 1EIT unit (H-1E1T). A selective program-
ming scheme is proposed based on the H-1E1T, and the applied
signals in each terminal during different programming processes
are summarized in Table S2, including potentiation, remaining
and depression stages. During all the stages, the Vi, terminal and
Vs terminal will be kept unchanged, biased at depression voltage
V;, and grounded, respectively. The electrochemical doping or
dedoping within ECRAM is determined by the electric field

between gate terminal and drain/source terminal. For potential
programming, Vi terminal is applied by the potential voltage V,
while Vg terminal is at ground state, and the selector transistor
is at Off state; thus, the bias voltage of the ECRAM drain terminal
is approximately 0 V, the voltage difference between gate and
drain is almost Vp, which enables conductance to increase. If the
selector transistor is at On state, Vi terminal is applied by source
supply voltage Vg, thus the bias voltage of the ECRAM drain
terminal is approximately Vp, and the effective programming
voltage of ECRAM is V;, — V,, based on previously half-selected
ECRAM programming method [57], the device state can hardly
be changed. On the contrary, during the depression stage, the
Vi terminal is grounded state and the V¢ terminal is applied by
source supply voltage Vg, then the effective programming voltage
of ECRAM is -Vp, and the backward gate-channel electric field
will help drive ions back into electrolyte and enable depressed
programming. However, when Vg is also grounded, there will
be negligible voltage differences within ECRAM. Compared with
the selective programming in vertical 1E1T unit, there is no use of
any negative bias signals, reducing the complexity of peripheral
CMOS circuits.

The proposed two-terminal selective programming method
enables efficient array-level parallel operations in our CIM
architecture, supporting both row-wise and column-wise pro-
gramming with separate potentiation and depression phases
(Figure 5a). Experimental results demonstrate precise conduc-
tance control under varying programming voltages (V, and
Vp), showing an exponential relationship between conduc-
tance change per pulse and voltage amplitude (Figure S22c,d).
Remarkably, this two-terminal approach maintains excellent
programming linearity (Figure S22e), as evidenced by the 100%
accuracy achieved in long-term potentiation/depression cycles
(Figure 5b) and its superior linear characteristics (Figure S22f).
The system’s robustness is further confirmed through continuous
selective programming tests across all operational stages, where
device states remain stable during retention periods (Figure S23).
More complex programming scenarios (Figure 5c,d) successfully
validate the architecture’s capability for reliable online training
applications.

During inference operations, the selector transistors transition
into reference transistors with uniformly biased gate termi-
nals, while all ECRAM gates are grounded or left floating
to prevent state degradation. Input data is applied to the
drain terminals of inference transistors, enabling in situ weight
transfer through voltage division between ECRAM devices and
reference transistors—a process governed by the previously
discussed ECRAM conductance relationship (Figure 5e). This
architecture allows dynamic regulation of binary inference
weights through modulation of hidden analog memory states
(Figure 5f), achieving idealized linear multiplication between
input voltages and hidden weights via the inference tran-
sistors operating in their linear region. The system’s analog
computation capability is demonstrated in Figure 5g, show-
ing precise linear transformation of randomly generated input
waveforms.

To demonstrate the application of MTT units in mapping neural
networks, firstly, a small two-layer fully connected BNN (2x3x1)
is utilized to classify a self-made XOR dataset (Figure 5h). The
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FIGURE 5 | Programming and inference of MTT-based arrays. a) Schematic of array-level programming, where programming pulse signals at
different ports are labeled alongside the respective signal lines. The blue, gray, and yellow blocks represent increases, maintenance, and decreases in the
conductance of the ECRAM after stimulus, respectively. b) Variation of long-term conductance potentiation and depression in the H-1EIT unit. The upper
panel illustrates the application of pulse signals for conductance potentiation and depression in the H-1EIT unit, with VEG and VED pulse amplitudes
set at 10 and 6 V, respectively, and a pulse width of 5 ms for both. c,d) Selective programming results of the H-1E1T unit based on the pulse programming
scheme shown in panel (a), where the red line indicates the average conductance change during programming. e) Schematic diagram of inference
based on the MTT-unit-based array, where the inference input waveform is applied at the drain terminal of the inference transistor controlled by the
voltage division in the MTT unit. f) Relationship between the simulated input voltage and output current under different hidden weight conductance. g)
Specific simulated input voltage waveforms and output current waveforms from panel (f), demonstrate a strong linear relationship that enables analog
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hardware architecture based on MTT unit is shown in Figure 5i,
which also include batch normalization layers and Sign activation
function units, with the data flow indicated by red arrows. Based
on the weight transfer function in the MTT unit, the neural
network training converges to nearly 100% accuracy within 25
epochs (Figure 5j), and more specific details of the used weight
transfer function can be found in the Experimental Section. The
evolution of hidden weights and binary inference weights of the
first layer in training is compared in Figure 5k, and approximate
discrete binarization of analog weights is successfully realized. By
mapping the trained hidden weights into ECRAM conductance,
the final measured classification accuracy can reach 99.5%,
with another similar example (Figure S24) achieving accuracy
of 98.5%.

Moreover, for RRAM-based MTT units, the programming scheme
resembles conventional 1T1R. Array-level programming (Figure
S25a) leverages bipolar characteristics: set/reset operations
are performed via the PBL and SL selectors, respectively.
Programming proceeds row-by-row or column-by-column,
with separate potentiation and depression phases. Inference
in RRAM-MTT arrays mirrors ECRAM-MTT arrays—an
analog input waveform is applied at the drain terminal
of the inference transistor, regulated by voltage division
in the upper MTT unit (Figure S25b). The two-terminal
compact structure of RRAM-MTT enables significant area
reduction.

With the weight transfer function enabled in both ECRAM-
and RRAM-based MTT units, we extend their application to
practical binary neural networks (BNNs), which are ideal for
edge platforms due to their lightweight nature. Simulations on
fully connected (FCNN) and convolutional neural networks
(CNN) (see the Experimental Section) show comparable
performance between ECRAM- and RRAM-based in-memory-
binarization (IMB) functions when using idealized Sign
binarization (Figure S26). Final testing accuracies across
multiple trials are summarized in Table S3. Notably, binary
CNN performance improves when employing the physical
weight transfer function in MTT units, suggesting that the fuzzy
binary quantization can somehow keep more precision at the
original hidden weights in CNN and that the physical weight
transfer in MTT unit is not just a simple approximation of Sign
function.

Prior energy-efficient computing units often trade function-
ality for hardware complexity. In contrast, our MTT unit’s
programming scheme maintains quantization capability while
minimizing components. For fair comparison, we evaluate
within an in-memory computing architecture using crossbar-
like arrays. As shown in Figure S27a,c, conventional differential
structures require 8 components (4T4E or 4T4R) to store both

analog hidden weights and binary weights. However, our MTT
unit, optimized for edge quantization networks, achieves this
with only 4T2E (Figure S27b) or 4T2R (Figure S27d), enabling
simultaneous analog and binary weight storage. Thus, MTT
units not only enable in situ weight transfer but also reduce
hardware complexity, improving both energy efficiency and
footprint.

2.4 | In Situ Weight Quantization in MTT Units
for Continual Learning and LLM

To verify and expand the versatility of the MTT unit in other kinds
of important edge applications, two other important applications,
continual learning and LLM, are employed to do the examination.
(58]

Notably, A. Laborieux’s metaplasticity-inspired BNN [52, 59]
demonstrates particular promise for edge implementation, com-
bining synaptic-centric training with hardware-friendly charac-
teristics suitable for emerging learning approaches.

Edge applications should adapt to unpredictable real-world vari-
ations, requiring neural networks to continually learn new sce-
narios without degrading performance on prior tasks, which is a
challenge known as catastrophic forgetting. While standard deep
learning methods fail to learn incrementally without access to old
data, simply retraining on all data (both old and new) is computa-
tionally prohibitive for resource-constrained edge devices. Recent
research has developed continual learning algorithms to address
this, including regularization, experience replay, dynamic archi-
tectures, and knowledge distillation [58]. Among these methods,
a metaplasticity-inspired BNN proposed by A. Laborieux [52,
59], can be generally used in a range of emerging learning
approaches. The synaptic-centric training with hardware-friendly
features make it more suitable for implementation at edge
devices.

Metaplasticity, inspired by neural mechanisms enabling task
retention (Figure 6a), governs synaptic strength changes
through hidden states, effectively representing the plasticity of
synaptic plasticity. This synaptic consolidation mechanism is
crucial for memory storage, where a synapse’s metaplastic state
quantifies its task importance, preventing catastrophic forgetting.
Laborieux et al. [52] incorporated this concept into BNNs by
linking real-valued hidden weights to synaptic importance,
enabling continual multi-task learning. As shown in Figure 6b,
their modified BNN training alters gradient computation; that
is, when binary inference and hidden weight signs align, the
gradient is scaled by a nonlinear meta function f,,,,:

fmeta (Wl, Wh) =1- tanh2 (m X Wh) (8)

multiplication computations controlled by hidden weights. h) Linearly nonseparable datasets are used for testing the array composed of MTT units,

where shapes and colors represent different classes. i) Schematic representation of a 2x3x1 array composed of MTT units, which also includes batch

normalization layers and activation function units based on the Sign function. j) Training performance visualization of the dataset in panel (h) within a

BNN based on a 2x3x1 architecture. k) Changes in hidden weights and binary inference weights of the first layer neural network throughout the training

process, where the hidden weights are quantized to 3 bits during training. 1) Inference results mapped to hardware from the final weights in panel (k),

achieving a practical inference accuracy of 99.5%.
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FIGURE 6 | Applications of weight transfer relationships in MTT units for continual learning. a) Schematic diagram of the relationship between

synaptic metaplasticity and changes in synaptic weights in biological neural networks. b) Schematic diagram of a continual learning model that combines
metaplasticity with binary neural networks, where each weight in the model consists of an analog hidden weight for training and a binary-value inference
weight for inference. During network training, the gradient computation is modulated by the value of hidden weights. c) Algorithm flowchart for the
binary neural network based on metaplasticity and its corresponding hardware acceleration, which primarily includes weight binary quantization and
in-memory computation inference components. d) Datasets are used to test the continual learning performance of small networks, comprising three
distinct datasets: Data-A, Data-B, and Data-C. e) Training performance of the BNN based on metaplasticity on the different datasets in panel (d), where
hidden weights are quantized to 3 bits during training, and the binary quantization curve utilizes weight transfer relationships from ECRAM-based MTT
units. f-h) Statistical distributions of target conductance versus actual conductance for hidden weights in the first layer of the network; the variation
of hidden weight conductance during the write-verify programming process; and the read current of an inference transistor for a typical weight, along
with the variation of the intermediate node voltage during the programming process, where weights are implemented using ECRAM-based MTT units.
i-k) Statistical distributions of target conductance versus actual conductance for hidden weights in the first layer of the network; the variation of hidden
weight conductance during the programming process; and the read current of an inference transistor for a typical weight, along with the variation of
the intermediate node voltage during the programming process, where weights are implemented using RRAM-based MTT units.
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Here, W), represents the real-valued hidden weight and m controls
the decay rate in non-zero regions. The gradient computation for
binary inference weights W, incorporates W) to minimize sign
changes, particularly for larger |IW,,| values, thereby preserving
performance on learned tasks. As shown in left of Figure 6c, con-
ventional CIM architectures face significant overhead from fre-
quent weight binarization between W), and W,, as gradient com-
putation and weight quantization occur in separate arrays. This
leads to both increased latency/energy from data movement and
reduced efficiency from post-quantization programming. Our
solution (Figure 6c, right) integrates MTT units with CIM archi-
tecture to eliminate this quantization bottleneck, enabling direct
mapping of quantized hidden weights to analog memory devices.

To evaluate continual learning performance, we created three
custom datasets (Data-A/B/C, Figure 6d) and trained a 2x3x1
binary FCNN using the metaplasticity algorithm (see the Exper-
imental Section). ECRAM-MTT units enabled low-precision
weight quantization. As shown in Figure 6e, the model suc-
cessfully learned new tasks without catastrophic forgetting. The
larger model, which consists of a large number of weight param-
eters, will be more stable in continual learning for the excess
weights to learn new things and keep memory for old things, and
the continual learning capacity of larger-level neural network will
be also explored later.

Weight mapping only requires programming analog hidden
weights into MTT units, eliminating additional binarization
steps. To address device non-idealities, we employ a write-verify
scheme (Figure S28) with adaptive programming intensity for
reliable Set/Reset operations. This universal approach applies to
various emerging memories (RRAM, PCM, FeFET, ECRAM, etc.)
[18, 19], differing only in specific Set/Reset implementations. For
ECRAM-MTT units, Figure 6f demonstrates precise conductance
programming with minimal error, while Figure 6g shows the
deterministic switching from random initial states. Figure 6h
illustrates the coordinated binary/hidden weight updates in
MTT operation. Additional validation (Figure S29a-f) confirms
software-equivalent inference accuracy. RRAM-MTT implemen-
tations (Figure 6i-k, Figure S30) achieve similar accuracy but
suffer from nonlinear conductance changes, increasing latency
and energy consumption, which highlights the need for RRAM
with improved linearity for efficient online training.

A larger-level neural network simulation is necessary to demon-
strate the practicality of MTT units. Four non-overlap datasets
are shown in Figure 7a, which are Kuzushiji MNIST (KMNIST)
[60], Fashion MNIST (FMNIST), MNIST and Kannada MNIST
(KaMNIST) [61]. All the image sizes in the datasets are 28x28x1,
thus the neural network can keep the same structure in training
sequentially. In this metaplasticity-inspired algorithm, the analog
hidden weights serve as important factors behind the binary
weights, and two sets of mixed-precision weights are essential in
continual learning, which is verified in Figure S31a where the
catastrophic forgetting happens without the binarization. This
demonstrates that low-precision quantization is crucial not only
for resource efficiency but also for maintaining fundamental
network performance in continual learning scenarios.

To optimize memory efficiency, we quantize hidden weights into
discrete states with a boundary of +1. As pretested (Figure S32),

3-bit precision maintains continual learning capability, and is
therefore adopted for both ECRAM-MTT and RRAM-MTT units.
Figure 7b and Figure S31b show the training processes, while
Figure 7c compares final accuracies across binarization methods,
confirming the IMB function’s effectiveness. Programming error
tolerance is critical for weight mapping. Figure 7d demonstrates
that ECRAM-MTT units tolerate up to 20% programming noise
(with weight distributions in Figure 7e). However, larger errors
accumulate during training, causing significant performance
degradation with increasing epochs (Figure S33). Table S4
quantifies this trade-off between training duration and accuracy
under varying programming errors, highlighting the need for
careful balance.

Apart from continual learning of different tasks, another variant
is stream learning, which is utilized to tackle the situation
where only part of the training data are available at a given
time. As shown in Figure S34 and Figure 7f, both FCNN and
CNN architectures (see the Experimental Section for details)
demonstrate successful stream learning using the weight transfer
function, confirming its utility in both ECRAM-MTT unit and
RRAM-MTT unit.

For low-precision quantization, ternary quantization possesses
better expressive abilities than binary precision counterparts, and
its basic function is:

41, W,>A
Wr=4 0, W] <A O]
-1, W, < -A

where A is the positive threshold parameter, and W, and W,
are ternary inference weights and real-valued hidden weights,
respectively. The zero-value region is an important feature in
ternary quantization, whereas it does not exist in binarization
weight transfer in MTT units. However, by biasing the MTT unit
at sub-threshold regions, as previously predicted in Figure S12
where W, will always be about 0 at a small value of W,,, it is
possible to serve as a physical ternary weight transfer function. By
controlling the hidden weight reading bias voltages, which usu-
ally are smaller than V; of the inference transistor, ternary weight
quantization function can be well fitted, as experimental tested in
Figure 7g and Figure S35a, where the relation between transferred
ECRAM conductance G, and original ECRAM conductance

G, is:
’ Ges Its > 0
G, = (10)
-G, I,; <0

Here, I, is the channel current of the inference transistor
measured at the source terminal, and the fitting model is based
on:
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FIGURE 7 | Large network applications and validation of in situ weight quantization relationships based on MTT units. a) Continual learning
datasets for simulation validation, with each image in the different datasets sized at 28x28x1, and the datasets being independent of one another. b)
Training results of continual learning for the datasets in panel (a), where the learning sequence is KMNIST-FMNIST-MNIST-KaMNIST, employing
a weight binary quantization function based on ECRAM MTT units. c) Statistical results of the final training accuracy across different datasets using
various binary weight conversion functions. d) Network training performance is based on different relative programming error levels, where the network
performance is almost unaffected when the error level is below 20%. e) The final distribution of hidden weights at the first layer of the network after
training under different programming errors. f) Stream learning performances based on different binary weight conversion functions, with the dataset
using Cifar-10 and the network model being VGG-7. g) Weight ternary quantization relationships based on MTT units, where the hidden weight bias
voltage is set at 0.7 V, and the gate bias voltages of the reference transistor are set at 0.55, 0.60, and 0.65 V, respectively. h) Schematic diagram of the
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where r is the threshold parameter or the radius of zero regions,
and as for other parameters, the previous model can be referred
to. Fitting parameters of the ternary weight transfer function in
the different bias conditions with corresponding notes are listed
in Table S5. For the network-level verification of the ternary
weight transfer function in the sub-threshold ECRAM-MTT unit,
BART, a kind of LLM featuring a bidirectional encoder similar
to BERT and a left-to-right decoder akin to GPT, whose low-bit
version are used in resolving text summarization tasks [62], is
employed to test (Figure 7h). The statistics-based quantization
algorithm in Liu’s work [62] is adopted, including ternary and
binary version of the BART model. Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) is employed to evaluate auto-
matic text summarization, which is based on comparing the
overlap between generated text (e.g., abstracts) and reference text
(e.g., human-written abstracts). The variants include ROUGE-1,
ROUGE-2 and ROUGE-L, and the higher the scores are, the better
the model performance is. When the model input and activation
are under the relevant quantization, the LLM performances of the
different weight transfer functions in MTT units are summarized
in Figure 7i, including both ternary and binary quantization. T2-
bias based ternary weight transfer function corresponds to the
most outstanding performance among all the tested conditions,
where hidden weight bias voltage is 0.7 V and reference gate bias
voltage is 0.6 V. Compared with baseline in software, final results
only lag behind by 0.80, 0.75, and 0.67 at ROUGE-1, ROUGE-
2, and ROUGE-L, respectively. The weights before and after T2
ternary quantization are partly demonstrated in Figure 7j, in
which the zero-region feature is reflected in weight transfer. In
addition, when the model input and activation functions are both
in 8-bit float format, as tested in Figure S35b, ECRAM-MTT-based
binarization is the best choice for quantization. Thus, the physical
quantization scheme should be adjusted according to the specific
neural network.

In the energy estimation during the weight quantization and
saving process, for the digital hardware platform, A100 GPU is
adopted as the processor with Samsung 980 PRO NVMe solid-
state drive as the nonvolatile memory for storage of analog
weights and binary weights. The evaluation of the MTT-unit-
based array is presented in Note S1, which is mainly based upon
the experimentally measured device data, including the average
number of Write-Verify times and the average power consump-
tion of programming and reading once. Figure 7k shows the
energy comparison in the quantization computation and storage
process based on different hardware architectures. As the array
scale (N) increases, the MTT unit saves more energy in the weight
quantization process. When the array scale is 4Mb, the ECRAM-
MTT and RRAM-MTT platforms save 25.51x and 4.84x of energy
consumption, respectively. To evaluate the performance of the
MTT unit in the synaptic unit function, it is compared with some
related works based on hybrid synaptic units, mainly from the
aspects of unit device type, structural complexity, programming
characteristics and network computing characteristics. As shown

in Table 1, this work only requires 6 components with significant
reduction in unit complexity 25, 38, 40, 63, 64]. It supports in situ
weight conversion without additional secondary programming,
supports mixed precision calculations, possesses scalable unit
structure, and is able to be applied to RRAM memory types
with a wider range of application scenarios, including BNN-based
continual learning and low-precision LLM.

3 | Conclusion

In this work, for in situ accelerating low-precision quantization
computations of edge networks, we have developed an in situ
quantization hardware unit based on ionic non-volatile memory-
transistor coupling integration. By in-situ quantization of analog
weights, the traditional in-memory computing paradigm has
been expanded. Our research focuses on revealing the physical
mechanism of linear conductance regulation of ECRAM devices,
promoting the precise mapping of network analog weights in
online training, and clarifying its stable conductance regulation
mechanism through a combination of experimental characteriza-
tion and theoretical modeling. By establishing a theoretical model
for device parameter optimization, we systematically study the
impact of bias conditions on the in situ quantization function of
weights. Moreover, this research successfully extends the techni-
cal solution to the RRAM system, and based on its comprehensive
performance optimization of switching ratio tolerance, it can also
replace the ideal quantization function in software. Experiments
show that the classification accuracy of the quantization function
based on the electrical characteristics of the unit structure in the
binary neural network is consistent with the ideal function, which
can support low-precision continual learning to overcome the
catastrophic forgetting problem of traditional neural networks
and binary/ternary large language model calculations as well. At
the 4 Mb array scale, during the computation and saving of the
quantization process, the quantization units based on ECRAM
and RRAM achieve 25.51 and 4.84 times energy consumption
reductions compared to traditional digital platforms, respectively,
providing a more energy-efficient in situ quantization calculation
solution for low-precision network training at the edge.

4 | Experimental Section
4.1 | ECRAM Array Fabrication

The fabrication of the ECRAM array utilized silicon substrates
featuring 300 nm of thermally grown silicon dioxide. The process
began with electron-beam lithography to create patterns for
the source-drain contacts, after which 5 nm of Ti and 25 nm
of Au were deposited using electron-beam evaporation. The
contact electrodes, essential for monitoring changes in channel
conductance, were finalized through a lift-off procedure. Fol-
lowing this, a second round of electron-beam lithography was

BART text summarization model application, which primarily consists of a bidirectional encoder and an autoregressive decoder. i) LLM learning results

of the weight conversion relationships of MTT units under different bias conditions, where both the model input and activation functions undergo

relevant quantization. j) Distribution diagrams before and after quantization of some weights based on the T-2 weight conversion relationship. k) Energy

consumption comparison between in-place quantization based on MTT units and weight conversion on traditional CMOS digital platforms.

Advanced Science, 2026

15 0f 20

85UB91 SUOLWLLOD aA IRl 9jedljdde ay) Aq pauienob ale sejoile YO ‘8sn Jo o Joj Aeld178UIUO A1 UO (SUONIPUOD-PUe-SLLBW0D" A8 | 1M Ale.q 1 puluo//Sdny) SUONIPUOD pue SWie | 8y 8es *[9202/T0/2z] Uo Akeiqiaulluo A8|IM ‘ST8TZSZ0Z SAPR/Z00T OT/I0p/LL00" A8 1M ARelq 1 puljUO"PeaUeApe/ SNy Wol) pepeojumod ‘0 ‘t8E86TC



Evaluation of hybrid synaptic unit for separate training and inference.

TABLE 1

Mixed-

precision

Programming-

In situ
inference

In situ weight

free

Bit precision Nonvolatility

Inference

Training

Application Refs.

unit

of TD ID transfer

of TD

device (ID) Unit complexity

device (TD)

PCM 2x3T1C+2T2P >8 No No Yes Yes No Transfer Learning [63]

Transistor

Capacitor

RRAM

Yes Yes Yes No Transpose, Margin [25]

Yes

2x2T1R

Enhancement

[64]
[40]
(38]

BNN, TNN-LLM This work

No Yes Yes No Transfer Learning

Yes

2x2T1D-FeFET

FeFET

FeFET

No No Yes Yes BNN

FPGA+2XIT1R Floating-point No

RRAM

Digital

No Yes No Yes BNN

Yes

8T8C+1TIR
2x2T1E

RRAM

Transistor

FeRAM

Yes Yes Yes Yes

Yes

ECRAM

Note: For a more fair comparison, unit complexity is based on the differential structure in CIM.

employed to define the channel area, where 60 nm of tungsten
trioxide (WO,) was deposited by radio frequency magnetron
sputtering, acting as the ECRAM channel. After the lift-off,
the electrolyte region was patterned using a third round of
electron-beam lithography, during which 120 nm of LiPON was
deposited from a Li; PO, target using radio frequency magnetron
sputtering under a nitrogen flow of 10 sccm and at a power
setting of 150 W. Subsequently, 40 nm of SiO, was deposited to
shield the electrolyte from environmental moisture. To isolate the
different wires, 40 nm of SiO, was used after the fourth round of
electron-beam lithography. Finally, a fifth round of electron-beam
lithography was utilized to pattern test pads, which were then
deposited with 10 nm of Ti and 220 nm of Au via electron-beam
evaporation.

4.2 | Electrical Measurements

All the electrical measurements were performed using an Agilent
BI500A semiconductor analyzer and the electrode pad lead-out
was realized by the TS3000 Probe System. Except for device size
exploration, the devices size used in this paper are all kept at 10 um
X 10 ym.

4.3 | Material Characterization

To analyze the material components of fabricated devices, the
TEM samples were prepared first by the focus ion beam technique
(Helios G5 UX). After that, TEM testing as well as EDS imaging
were performed on Talos F200X G2 systems. TOF-SIMS tests of
WO, -based ECRAM were conducted with a PHI nano TOF II
(ULVAC-PHI Inc., Japan). The sputter etching was performed
using an Ar* beam (3 kV 100 nA) to obtain the depth profile of
tested samples for different resistance states.

4.4 | Transistor Characteristics Used in Model
Prediction

For a nMOSFET, while Vg, > Vi, if Vi, < Vo —
current I, can be written as:

Vi, the drain

Iy = Moy X Copx X % X (Vg = Vr) X Vg +bias  (12)
where V7 is the threshold voltage of the transistor, V,, and V;
are the gate-source voltage drop and drain-source voltage drop,
respectively, y,; is the effective carrier mobility, C,,, is the oxide
capacitance per unit area, Wand L are the width and length of the
transistor, respectively, and the bias is the compensation. When
Ves < Vr, the transistor will be in the subthreshold region, the
channel current I, can be written as:

w 2
Idszyeffxcoxxfx(m—l)xT’

V.-V %
xexp <riTT'T> X <1—exp <— T‘f))

Here, T' = kX—T, where k is the Boltzmann constant, T is the
q

absolute temperature, q is the charge of electrons, and m is
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the subthreshold slope factor. The above parameter values are
concluded in Table S1.

4.5 | Neural Network Simulations in MTT Model
Derivation

The metaplasticity-inspired BNN is adopted to test the weight
transfer functions in the MTT model, where the main body of
this algorithm is the BNN, whose weight values and neuron
activations are limited to be 1 or —1. The distinctions between
this approach and a traditional binary neural network are in the
training process, where the updated gradients must be multiplied
by a nonlinear function, which is associated with the values of the
hidden weights and is influenced by a hyperparameter m, which
will be fixed at 12. The tested image sizes are all set as 28x28; the
network structure is kept at 784x1000x500x10; the learning rate
is set at 0.005; the hidden weights are uniformly quantized into 3
bits with quantization boundary of +1.

4.6 | Quantized Hidden Weights and Binary
Weights from Physical Electrical Signals

By taking the weight transfer function into neural network
simulation, the relationship between quantized hidden weights
W, and ECRAM conductance G, is:

G, — G, i
e e,min , Its Z 0
Wh _ Ge,max - Ge,min (14)
_Ge + Ge,min I.<0
Ge,max - Ge,min P
where I; is the channel current of the inference transistor, G, ..

and G, ,,;, are maximum and minimum ECRAM conductance
during programming, respectively. The relationship between
quantized binary weights W}, and channel current of the inference
transistor I, is:

I
W, =—=2 15)

Its,max

where I, is the channel reading current when the gate is
biased at V.4 i, Which is also the maximum channel current at
infinite ECRAM conductance.

4.7 | Weight Transfer Function Used in Neural
Network Training

During all the network simulations unless otherwise specified,
the MTT transfer function in ECRAM-MTT units is selected when
the maximum operating conductance is 50 pS, and the specific
function is:

AWyl N
4a1.62xW,+2 ) Th=

Wy, = (16)
—METXWy+1
—4445xW,+2 ) "

While for RRAM-based MTT units, the weight transfer function
is:

6361x W, +1 \
63.67XW,+2 ) "h=

W, = 1)
“70.03XWy+1 N o
—6744xW,+2 ) h

4.8 | ECRAM- or RRAM-Based IMB for Edge
Neural Network Simulation

For testing IMB in MTT units in edge light-weight neural
networks, two kinds of common models, FCNN and CNN, are
employed. As for FCNN, Fashion-MNIST is chosen for classifica-
tion, with neural network size of 784x1000x500x10 and learning
rate of 0.005. For CNN simulations, the binary VGG-7 with six
convolution layers of 128-128-256-256-512-512 filters and kernel
sizes of 3 is employed, and the learning rate is 0.0005. Both neural
network simulations of FCNN and CNN are run for 10 rounds, the
average final accuracies and variations are shown in Table S3.

4.9 | Neural Network Simulation for Continually
Learning Small Tasks

For neural network simulation on the continual learning of
different small tasks, neural network structure is set as 2x3x1;
learning rate is 0.005; meta-parameter m is 10; the quantized
precision and boundary of hidden weights are 3 bits and +1,
respectively.

410 | Stream Learning

Basic neural network structures are the same as edge neural
network simulations. In the FCNN stream learning, the Fashion-
MNIST dataset is split into 40 subsets, and each subset is learned
for 10 epochs, with meta parameter m set as 5. In the CNN stream
learning, the Cifar-10 dataset is split into 25 subsets, and each
subset is learned for 20 epochs, with meta parameter m set as 10.

4.11 | DFT Calculation

The structural properties of the material before and after Li
atom doping were investigated through density functional the-
ory (DFT) calculations using the Vienna Ab initio Simulation
Package (VASP) [65, 66]. The projector augmented wave (PAW)
plane-wave basis set with the Perdew-Burke-Ernzerhof (PBE)
[67] exchange-correlation functional was employed in the com-
putational framework. To account for the strong correlation
effects of d electrons in transition metal elements, DFT+U
[68] correction was implemented with Hubbard U values of
4.0 eV for Nb and 6.2 eV for W, respectively. Prior to electronic
property calculations, structural relaxation was performed until
the atomic forces converged below 0.02 eV/A. In addition, the
migration energy barriers of Li ions within different materials
were determined using the climbing image nudged elastic band
(CI-NEB) method [69]. The amorphous structures were generated
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via melt-quench molecular dynamics simulations starting from
their crystalline phases. The amorphous WO, structure was
generated using a 128-atom WO, supercell, while the amorphous
NbO, structure was generated using a 168-atom Nb,O; supercell.
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