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In-memory computing based on emerging non-volatile memory
arrays holds a great promise to cope with the drastically increased
demand for data processing. Phase-change material (PCM) is a
leading candidate for in-memory computing, which utilizes the
amorphous-crystalline phase transition and the associated changes
in electrical resistance or optical transmission for data encoding
[1]. The flagship PCM is Ge2Sb2Te5 (GST). In comparison with
PCM electronic devices, the data throughput can be largely boosted
by leveraging parallel computing in the photonic waveguide
devices based on the wavelength division multiplexing scheme.
Recently, a GST-based all-optical photonic crossbar array was suc-
cessfully designed and fabricated to realize the matrix–vector mul-
tiplication [2] that takes a heavy workload in artificial intelligence
computation. However, optical programming and computing were
performed in two separated steps due to sharing the same pho-
tonic integrated circuits (PICs). To avoid extra time waste in optical
programming, electrically reprogrammable GST cells [3] as a
hybrid optoelectronic interface could enable decoupled electrical
programming via electronic integrated circuits (EICs) and optical
computing in the PICs, and which can be performed simultane-
ously. Most recently publishing in Nature Communications, Zhou
et al. [4] achieved a milestone by developing a dot-product engine
based on a high-performance photonic-electronic GST cell array.
A hybrid computing system was developed using non-volatile
waveguide memory elements, which may speed up photonic com-
puting landscape transformation to non-von Neumann architec-
ture [5].

Waveguide microheater with partial ion implantation region in
silicon acts as a current conductive path for local Joule heating of
the deposited GST thin film [3]. By applying appropriate pulse pro-
files, structural transitions between crystalline and amorphous
phases can be initialized based on annealing and melt-quenching
processes [6]. Fig. 1a shows a schematic of an improved design in
electrothermal switching of the GST cell, below which the width
of doping region is tapered down. Thus, a temperature gradient
can be generated with its highest temperature overlapping with
the waveguide core and GST cell. Fig. 1b shows optical micrographs
of the fabricated devices on a silicon-on-insulator (SOI) chip.
Contact pads of the GST devices are wire bonded to an external
printed circuit board. Input light power (Xi) is partially absorbed
and attenuated by a GST cell with an encoded weight (Wi) depend-
ing on the amorphous-to-crystalline ratio by electrical program-
ming with an encoding precision higher than 4 bits. This light
transmission process mathematically represents an in-memory
multiplication operation (Wi∙Xi). Output from multiple devices
can be incoherently combined together to realize a multiply-accu-
mulate (MAC) operation (RWi∙Xi), which is essential for neuromor-
phic computing in signal processing and image recognition. For the
developed GST cell, it achieves one of the lowest energy consump-
tions per unit modulation depth (1.7 nJ/dB). Operating time
required for the Write and Erase processes are 232 and 556 ns,
respectively.

Fig. 1c shows one application using in-memory computing in
brightness scaling of an image. By leveraging large switching con-
trasts of (64%, 128%), the measured standard deviation (r) is as low
as 0.019 by comparing processed and calculated images. However,
change of hue and noises are observed for the processed image
using low switching contrasts of (4%, 8%). Standard deviation ver-
sus switching contrast was systematically investigated. As shown
in Fig. 1d, by enlarging the switching contrast, contrast-to-noise
ratio (CNR) can be enhanced with significantly reduced standard
deviation in computing errors. For high-precision processing, a
large switching contrast is preferred, which is an advantage of
using electrothermal switching of GST compared with those based
on the optical switching with relatively small contrasts [7,8]. Con-
volutional operation was also performed in edge extraction of
MNIST database images. The standard deviation is less than 0.12.
These processed images were fed into convolutional neural net-
works with inferencing accuracies higher than 86%. In addition to
a high computing accuracy, large switching contrasts also promise
reliable driving of the artificial neurons crossing their thresholds,
which are crucial for the photonic deep neural networks [9].

This work exhibits merits of optoelectronic hybrid integration
for the in-memory photonic computing. Compute density, effi-
ciency, and energy per MAC operation are predicted to be 7.3
TOPS/mm2, 10 TOPS/W, 0.2 pJ/MAC, respectively, for a medium
sized 16 � 16 waveguide crossbar array. The present in-memory
photonic–electronic hybrid platforms clearly demonstrate attrac-
tive advantages like scalable and flexible programming, parallel
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Fig. 1. (Color online) Electrically reconfigurable in-memory photonic dot-product engine. (a) Schematic of a GST memory element for variable optical attenuation. (b) Optical
micrographs of a fabricated silicon photonic chip consisting of GST devices. (c) Image brightness scaling application. (d) Computational error in standard deviation (SD) and
contrast-to-noise ratio (CNR) versus switching contrast of the GST device. Reproduced with permission from Ref. [4], Copyright � 2023 Springer Nature.

B.-Q. Wang et al. Science Bulletin 68 (2023) 2500–2502
optical signal processing, and CMOS-compatible wafer-scale fabri-
cation. Undoubtedly, this study by Zhou et al. [4] has made an
important step to accelerate practical applications of PCM based
optical computing technology for the big-data era.

In future, reducing insertion losses in devices, system scaling up
using crossbar array networks, design or searching of high-perfor-
mance PCMs [10] could be further studied. Besides, device innova-
tion is expected by focusing on low-energy switching with an
operating voltage compatible with the CMOS architecture by
employing graphene heaters [11]. Improvement in storage capabil-
ity is anticipated from the current record 5-bit operation reported
in electrically controlled PCM devices [12]. Survey on PCMs with
ultrafast nucleation mechanism may be conducted to speed up
device programming. Cycling endurance and programming consis-
tency are another two issues, which may be improved by exploit-
ing phase-change heterostructures [13]. Considering wafer-scale
manufacturing, design and fabrication of the computational PCM
memory array should be compatible with the standardized silicon
photonic CMOS line with a robust back-end-of-line process for
integrating PCM functional layers on the PICs. Photonic-electronic
codesigned systems consisting of high-speed modulators, PCM
crossbar arrays, and photodetectors potentially pave the way for
the next-generation photonic deep neural networks operating at
2501
GHz clock rate. In addition to inferencing presented in Ref. [4],
in-situ training of weight banks is also expected for supervised
and unsupervised learning in AI tasks. Many more learning algo-
rithms, e.g., associative learning, reinforcement learning, can be
implemented based on the photonic-electronic in-memory com-
puting architecture.
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