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Dan Wang,1 Dong Han,2 Xian-Bin Li,1,3,* Nian-Ke Chen,1 Damien West,3,†

Vincent Meunier,3 Shengbai Zhang,1,3 and Hong-Bo Sun1

1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering,
Jilin University, Changchun 130012, China

2State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics,
Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

3Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
(Received 14 March 2017; revised manuscript received 30 August 2017; published 9 October 2017)

Energy evaluation of charged defects is tremendously important in two-dimensional (2D) semiconductors
for the industrialization of 2D electronic devices because of its close relation with the corresponding
type of conductivity and its strength. Although the method to calculate the energy of charged defects in
single-layer one-atom-thick systems of equilateral unit-cell geometry has recently been proposed, few-layer
2D semiconductors are more common in device applications. As it turns out, one may not apply the one-layer
formalism to multilayer cases without jeopardizing accuracy. Here, we generalize the approach to 2D systems
of arbitrary cell geometry and thickness and use few-layer black phosphorus to illustrate how defect properties,
mainly group-VI substitutional impurities, are affected. Within the framework of density functional theory, we
show that substitutional Te (TeP) is the best candidate for n-type doping, and as the thickness increases, the
ionization energy is found to decrease monotonically from 0.67 eV (monolayer) to 0.47 eV (bilayer) and further
to 0.33 eV (trilayer). Although these results show the ineffectiveness of the dielectric screening at the monolayer
limit, they also show how it evolves with increasing thickness whereby setting a new direction for the design
of 2D electronics. The proposed method here is generally suitable to all the 2D materials regardless of their
thickness and geometry.
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I. INTRODUCTION

Two-dimensional (2D) materials are promising candidates
for future high-performance electronics and optoelectronics
due to their intriguing properties [1–8]. One of the prerequisites
for achieving this goal is to understand the properties of the de-
fect. This is not only because native defects and unintentional
impurities are usually unavoidable in a real sample and can
strongly affect the physical properties of materials, but also
because intentional doping is a primary means to control n- or
p-type conductivity, which is a key ingredient for the design of
optoelectronic devices [9–12]. This has prompted the theoreti-
cal development of methods to study ionization energies (IEs)
or charged energies of defects in monolayer (ML) materials to
overcome the drawback of energy divergence accompanied
with the use of a conventional jellium approach [13,14].
Due to reduced dimensionality and screening, defects usually
introduce deep (i.e., close to midgap) levels in such materials
[13,15,16]. However, the levels are found to be shallower when
the monolayer material is placed in a dielectric environment,
such as on a substrate, which can strongly screen the
Coulomb interaction between charges [15]. This suggests that
controllable electrical conductivity should be easier to obtain
in few-layer systems. Moreover, few-layer 2D materials or a
monolayer on a substrate is more practical in electronic devices
instead of a freestanding monolayer [5,17–22]. Therefore,
understanding defects in few-layer 2D materials is a significant
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goal for the fundamental understanding of low-dimensional
electronics. One possibility to tackle the physics of defects in
multilayer could be the use of a supercell with extremely large
vacuum size to mimic that the few layer is still thin enough
compared to this vacuum size and the application of the exist-
ing monolayer formalism [13]. However, such calculations are
usually prohibitive due to the associated computational cost.
Thus, it is essential to update the formalism of IEs of defects
in 2D materials for systems with more than one layer under
the condition of limited vacuum size.

In this paper, we derive a general formalism of charged
energies based on Ref. [13] for not only one-atom-thick
systems of unilateral geometry, such as hexagonal boron
nitride, but also 2D systems of arbitrary thickness and
geometry including one-molecule-thickness [such as MoS2

and black phosphorus (BP)], few-layer-thick 2D systems on
a substrate, as well as surfaces and interfaces. We apply this
approach to calculate the IEs of the phosphorus vacancy (VP)
and substitutional group-VI impurities (OP, SP, SeP, and TeP)
in BP from monolayer up to trilayer (3L). Due to the increased
screening in thick layers, the IE of TeP is reduced from 0.67
eV for ML BP to 0.47 eV for bilayer [(2L) BP] and to 0.33 eV
for trilayer 3L BP. The results show that shallow dopants are
more practical and easier to obtain in few-layer BP and most
likely in other few-layer 2D semiconductors as well.

II. METHOD AND FORMULATION

The calculations were performed using density func-
tional theory [23,24] with the Perdew-Burke-Ernzerhof
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approximation for the exchange-correlation functional [25] as
implemented in the Vienna ab initio simulation package (VASP)
[26,27]. Note that, although advanced functionals could yield
more accurate results [28,29], the methodology developed
here is independent of the choice of functionals. The cutoff
energy for the plane-wave basis was 520 eV. The 3 × 2 × 1
Monkhorst-Pack mesh grid was used for k-point sampling, and
spin polarization was included. All atoms were relaxed until
the Hellman-Feynman forces on individual atoms are less than
0.02 eV/Å. For charged defects, a homogenous countercharge
(i.e., the jellium background) was used to maintain charge
neutrality [9,30,31].

The formation energy of a defect α of charge q is given by
[32]

�Hf (q,d) = E(q,d) − E(host) +
∑

i

niμi + q(εVBM + εF )

= �E(q,d) +
∑

i

niμi + q(εVBM + εF ), (1)

where �E(q,d) is the total energy difference between the
supercell with defect d, E(q,d) and the perfect supercell
E(host), ni is the number of atoms exchanged when the defect
is created, μi is the chemical potential of each of the atoms
exchanged, and εF is the Fermi energy with respect to the
valence-band maximum (VBM) of the host material εVBM.
The defect transition energy is defined by the Fermi energy at
which two different charge states (q ′ and q) of the same defect
d have the same formation energy �Hf (q,d) = �Hf (q ′,d).
Namely,

ε(q/q ′) + εVBM = [�E(q,d) − �E(q ′,d)]/(q ′ − q). (2)

A donor ionization energy, which evaluates the ability
of the defect to produce free carriers, is defined by ε(+/0)
with respect to the conduction-band minimum (CBM) εCBM,
whereas an acceptor ionization energy is defined by ε(0/−)
with respect to the VBM.

The scheme leads to an energy error of δE ∝ 1/
3
√

V for
3D materials, which means gradually converged energies with
increasing cell size but encounters a divergence with increasing
vacuum size for charged defects for 2D materials [13,14].
The divergence originates from the long-range Coulomb
interaction between the charged defects and the compensating
jellium charge. This difficulty is resolved by an extrapolation
of the asymptotic IE expression provided in Ref. [13],

IE(S,LZ) = IE0 + α√
S

+ q2

24Sε0
LZ

= IE0 + α′

Ls

+ q2

24L2
s ε0 sin θ

LZ, (3)

where IE0 is the converged (converged with respect to variable
cell size) ionization energy and Ls is the in-plane equilateral
cell size, i.e., Ls = Lx = Ly , S = L2

s sin θ is the surface
area with θ being the angle between Lx and Ly , and LZ is
the vertical cell size. This method has been shown to work
well for defects in monolayer boron nitride [13]. However,
direct application of Eq. (3) does not adequately describe the

FIG. 1. A schematic of the asymptotic limits of a charged defect
(yellow star) in a 2D system (light blue) with thickness (2d0) and
nonequilateral unit-cell geometry (Lx �= Ly) for the limit of LZ �
Lx,Ly .

asymptotic behavior of two-dimensional systems with certain
thicknesses, such as 3L BP studied here.

Equation (3) is derived in Ref. [13] from a formal expansion
of the calculated ionization energy in a power series of Lx

(Ly = γLx) and LZ , namely (for a more general expression,
Ls is replaced by Lx here),

IE(Lx,LZ) =
∞∑

i,j=−∞
ci,jL

i
xL

j

Z. (4)

By taking three separate physical limits: (1) Lx and Ly are
fixed, LZ → ∞; (2) LZ is fixed, Lx and Ly → ∞; and (3)
Lx , Ly , and LZ → ∞, the power expansion can be reduced
substantially to

IE(Lx,LZ) = · · · + 1

L2
Z

(
· · · + c−2,−2

L2
x

+ c−1,−2

Lx

+ c0,−2

)

+ 1

LZ

{
t ln(Lx) + c′

0,−1 + c′−1,−1

Lx

+ · · ·
}

+
(

· · · + c−2,0

L2
x

+ c−1,0

Lx

+ c0,0

)

+LZ

(
c−2,1

L2
x

)
. (5)

Equation (3) then is arrived at by requiring that LZ � Lx �
1. Although the requirement that LZ � Lx is physically clear,
it is not quite clear in which cases the largeness of Lx (or LZ

for that matter) enables the dropping of terms proportional to
1
Lx

, 1
L2

x
, etc. To gain a better understanding of which terms need

to be kept for practical calculations, we revisit limit (1) in the
more general situation of a charged defect in a dielectric slab
of finite thickness.

In this limit of LZ → ∞ at fixed Lx and Ly = γLx , the
system can be considered as a charged slab with area S and
thickness 2d0 in a uniform jellium background, see Fig. 1.
One may integrate the energy density 1

2 E2ε⊥ε0 where |E| =
q|z|

2Sε⊥ε0
( 1
d0

− 2
LZ

) (−d0 < z < d0) and 1
2 E2ε0 where |E| =

q

2Sε0
(1 − 2|z|

LZ
) (−LZ

2 < z < −d0,d0 < z < LZ

2 ) to obtain the
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total electrostatic energy,

Etotal = q2

24Sε0

[
(LZ − 4d0) − 2d0

(
1 − 1

ε⊥

)]

+ q2d3
0

3Sε0

(
1

ε⊥
− 1

)
1

L2
Z

+ q2d2
0

4Sε0

(
2 − 4

3ε⊥

)
1

LZ

, (6)

where ε0 is the vacuum dielectric constant (i.e., the absolute
dielectric constant as the relative dielectric constant of vacuum
is 1) and ε⊥ is the out-of-plane dielectric constant (relative
dielectric constant) of the 2D material (see the Appendix for
details). As S = Lx × Ly × sin θ = γL2

x sin θ , we find

Etotal = q2

24γL2
xε0 sin θ

[
(LZ − 4d0) − 2d0

(
1 − 1

ε⊥

)]

+ q2d3
0

3γL2
xε0 sin θ

(
1

ε⊥
− 1

)
1

L2
Z

+ q2d2
0

4γL2
xε0 sin θ

(
2 − 4

3ε⊥

)
1

LZ

. (7)

From this limit, the IE should be dominated by the Ln
Z term

n ∈ [−2,1]. Here, we explicitly see that, as the thickness of the
slab (2d0) increases, the energy has greater contributions from
L−2

Z and L−1
Z which vanish in the strictly 2D limit (LZ → ∞).

Also, worth noting is the presence of term ∝ d0/L
2
x in Eq. (7).

Although this is an idealized system, we see that the thickness
of the slab plays an important role as the appropriate physical
distance to which we should compare Lx and LZ . Hence,
Eq. (3) is expected to be valid when LZ � Lx � d0.

For the case of 3L BP however, with d0 = 0.66 nm (thick-
ness 2d0), neglecting quadratic terms in Lx , even with a lateral
dimension of 4 nm would constitute ignoring terms ∼120 meV
in the ionization energy. Furthermore, simultaneously requir-
ing LZ � Lx would drastically increase computational time.
In order to obtain a tractable method for dealing with defects
in this system, we include in the fitting of the ionization energy
terms which are up to quadratic in length where we truncate
the series as follows:

IE(Lx,LZ) = c0,−2

L2
Z

+ c(Lx)

LZ

+
(

c−2,0

L2
x

+ c−1,0

Lx

+ IE0

)

+LZ

(
c−2,1

L2
x

)
, (8)

where c(Lx) contains the logarithmic divergence Lx from
Eq. (5), c(Lx) = t ln(Lx) + c′

0,−1 + c′−1,−1

Lx
, and IE0 = c0,0 (as

Lx,LZ → ∞, only c0,0 survives and thus c0,0 equals IE0).
Instead of directly fitting all parameters simultaneously in
Eq. (8), we define

IE(Lx,LZ) = IE(Lx,LZ) − c0,−2

L2
Z

− c(Lx)

LZ

− LZ

(
c−2,1

L2
x

)

= c−2,0

L2
x

+ c−1,0

Lx

+ IE0. (9)

IE(Lx,LZ) consists of terms of IE(Lx,LZ), L−2
Z , L−1

Z , and
L1

Z , and it equals the coefficient of the L0
Z term (right-hand

side of the equation). Their specific values can be obtained
by fitting calculated IE(Lx,LZ) with increasing vacuum size

LZ at different Lx’s. Then IE0 is obtained as the intercept of

IE(Lx,LZ) at 1/Lx → 0. Therefore, the difficult problem of
taking the limits of Lx → ∞ and LZ → ∞ is transformed

into a simpler problem of finding the intercept of IE(Lx,LZ).
The results obtained using this way, denoted by method 1, are
shown in Figs. 3(a)–3(c) which will be detailedly discussed
below. Although this method gives consistent results, the
numbers of the calculations involved are laborious, which has
motivated us to investigate a more approximate method to
determine the ionization energy.

In practical application, the requirement of large LZ is
much easier to obtain than that of large Lx as it only involves
increasing the vacuum dimension instead of the number of
atoms. If we maintain LZ � Lx , we can drop the 1

LZ
and 1

L2
Z

terms from Eq. (8) which then reduces to

IE(Lx,LZ) = c−2,0

L2
x

+ c−1,0

Lx

+ IE0 + LZ

(
c−2,1

L2
x

)
. (10)

In order to obtain a more practical expression,
which reduces the amount of computation required, we
can approximate the value of the coefficient c−2,0 =

q2

24γ ε0 sin θ
[−4d0 − 2d0(1 − 1

ε⊥
)] from the ideal case presented

in Eq. (7), obtaining

IE(Lx,LZ) = c−1,0

Lx

+ IE0 + q2

24γL2
xε0 sin θ

×
[

(LZ − 4d0) − 2d0

(
1 − 1

ε⊥

)]
, (11)

which also includes the value of c−2,1 = q2

24γ ε0 sin θ
, which is

known exactly. When compared with Eq. (3) where LZ is
the vacuum size, L′

Z = (LZ − 4d0) − 2d0(1 − 1
ε⊥

) in Eq. (11)
here may be considered as an effective vacuum size. Then IE0

can be obtained in the same way as that proposed in Ref. [13].
Note that IE0 obtained in this way should be a function of the
threshold of LZ , denoted by LT

Z at which the terms of L−2
Z and

L−1
Z are considered to be negligible, namely, IE0(LT

Z). IE0(LT
Z)

approaches the actual one at LT
Z → ∞, so the real IE0 can be

deduced by making 1/LT
Z → 0. Since the terms of L−2

Z and
L−1

Z diverge faster and faster with increasing thickness 2d0

considering the ratio of 2d0/LZ , LT
Z should become larger

with increasing thickness. This way to get the actual IE0 is
denoted by method 2.

Two kinds of native defects (vacancy and interstitial) and
four kinds of substitutional impurities (O, S, Se, and Te) are
calculated here. In addition to Te substitution, the IEs for other
defects in ML BP are all obtained by Eq. (11) with LT

Z = 4 nm
in this paper. For Te substitution, which is adopted to explore
the dielectric effect in few-layer BP, the IEs in ML BP, 2L
BP, and 3L BP are all calculated using method 1 [Eq. (9)]
and method 2 [Eq. (11)]. The dimensions of the supercell
size are 4 × 4, 5 × 5, and 6 × 6 for Lx × Ly , and (2–5 nm),
(2.5–8 nm), and (3–8.5 nm) for LZ in ML BP, 2L BP, and
3L BP, respectively. It should be noted that in our formulation
γ = Ly/Lx must remain unchanged during the extrapolation.
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FIG. 2. (a)–(f) Optimized atomic structures of native defects VP and Pi and substitutional group-VI impurities, OP, SP, SeP, and TeP in ML
BP. (g) Their formation energy as a function of Fermi energy within the calculated generalized gradient approximation band gap of 0.91 eV.
Each P atom has three nearest-neighbor (nn) P atoms. In (a), the out-of-plane nn P of the vacant P atom in the bottom layer forms chemical
bonds with its two in-plane nn Ps. Five P atoms are relaxed significantly due to this rebonding, and they are all marked in pink. In (b)–(f),
interstitial P and substitutional O, S, Se, and Te are marked in purple, tawny, light blue, yellow, and green, respectively.

III. RESULTS AND DISCUSSIONS

Figures 2(a)–2(f) show the optimized atomic structures of
native defects and substitutional impurities in ML BP. Their
formation energies as a function of Fermi energy are shown
in Fig. 2(g). The native defects here include the phosphorus
vacancy (VP) and the interstitial (Pi). As most BPs show p-type
conductivity in the laboratory [4,5,33–35], four substitutional
group-VI elements (OP, SP, SeP, and TeP) are considered here
to explore the possibility of n-type conductivity. For VP, the
top-layer P atom, originally bonded to the vacant P atom
in the bottom layer, goes down in position to form fourfold
coordination. Despite that, the formation energy of neutral
VP (=1.96 eV) is still the largest. For Pi , the foreign P atom
can bond to three host P atoms, so its energy is relatively
low. VP and Pi are acceptors with deep transition energies
at εVBM + 0.36 and +0.48 eV, respectively. The group-VI
elements S, Se, and Te, on the other hand, favor twofold
coordination, which leaves one dangling bond (DB) in the
top-layer P. Hence, they are all donors. Whereas the formation
energy follows the trend Te > Se > S, the donor levels at
εCBM − 0.67, −0.69, and −0.74 eV get deeper due to the
increase in localization of P DB. Oxygen is somewhat an
exception as the formation energy for charge neutral OP

is negative now at −0.72 eV due to its exceptionally large
electronegativity, which is reminiscent of the fact that BP is
oxidized very easily by air. Due to the significantly increased
localization of the P DB in OP, the donor level also drops
significantly, 0.11 eV below the VBM.

In view of the above results, the best candidate for n-type
doping of ML BP is TeP (εCBM − 0.67 eV). However, these

levels are still too deep to supply a sufficient amount of
carriers for electronic applications. (With a more accurate
theoretical band gap, the situation is expected to only get
worse since the functional used here is known to systematically
underestimate the band gap [36,37].) The depth here mainly
comes from the weak screening of 2D semiconductors, leading
to a stronger effective Coulomb attraction between opposite
charges, compared to behavior in bulk material [15]. The
screening, however, should get stronger as the layer thickness
increases. For the clarity of discussion and for simplicity, in
our paper, defects are kept at the bottom of the first layer as in
Fig. 2. Altering defect positions is expected to alter numerical
results but not the conclusion.

Figures 3(a)–3(c) show the IE(Lx,LZ) of TeP in ML BP, 2L
BP, and 3L BP, respectively. In ML BP, the IE(Lx,LZ) is nearly
in linear divergence with increasing LZ at fixed Lx , which
means that the terms of L−2

Z and L−1
Z do not play a major role in

the energy divergence. However, they indeed do that in 2L BP
and 3L BP where the energies deviate from linear divergence

at small LZ . The intercepts at 1/Lx → 0 of IE(Lx,LZ) denote
the real ionization energies IE0, which become shallower with
increasing layer thickness: e.g., 0.67, 0.47, and 0.33 eV for ML
BP, 2L BP, and 3L BP, respectively. As shown in Fig. 3(d), IE0

also is obtained with method 2 [Eq. (11)]. In this way, the
terms of L−2

Z and L−1
Z in Eq. (8) are ignored at LT

Z (threshold
of LZ at which the terms of L−2

Z and L−1
Z are ignored), and

IE0 is dependent on LT
Z , i.e., IE0(LT

Z ). Direct extrapolation of
the linear dependence in 1/LT

Z of IE0(LT
Z ) yields the actual

value IE0 [orange arrows in Fig. 3(d)] being 0.67, 0.43, and
0.37 eV for ML BP, 2L BP, and 3L BP, respectively. The results
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FIG. 3. (a)–(c) Method 1 (M1): Ionization energies of TeP at different lateral dimensions (4 × 4, 5 × 5, and 6 × 6 for Lx × Ly) as a function

of LZ in ML BP, 2L BP, and 3L BP, respectively. The insets show the value of IE(Lx,LZ) = c−2,0

L2
x

+ c−1,0
Lx

+ IE0 as a function of 1/Lx . The

actual ionization energy IE0s are indicated by blue arrows. (d) Method 2 (M2): IE0(LT
Z) of TeP as a function of 1/LT

Z (LT
Z , the threshold at

which the terms of L−2
Z and L−1

Z are ignored) in ML BP, 2L BP, and 3L BP, respectively. The real ionization energy IE0s are indicated by orange
arrows. M1 and M2 mean that ionization energies are calculated with method 1 [Eq. (9)] and method 2 [Eq. (11)], respectively.

are well consistent with that obtained with method 1. Note
that the decreasing ionization energies are not only a result
of the up/down shifts of the VBM/CBM, but also a result
of weakened Coulomb attraction due to increased dielectric
screening. Although both methods perform well, the first one
needs more calculation resources than the second one since
the latter only requires the calculation of three or four points
for the linear extrapolation. Moreover, the slope of the linear
dependence is extremely small for thin films and becomes
larger with increasing thickness. This means that the value
of IE0(LT

Z) − IE0(LT ′
Z ) is minimal for the thinnest limitation.

Figure 3 (d) shows that indeed this is the case for monolayer
here where the energy difference between IE0(LT

Z = 2.5 nm)
and IE0(LT ′

Z → ∞) is less than 0.04 eV. Therefore, sensible
results can be obtained for monolayer at one appropriate LT

Z

without the need for linear extrapolation.
The thickness-dependent IE0 is consistent with the calcu-

lated defect/impurity charge distributions, shown in Figs. 4(a)–
4(c) along the in-plane (X and Y ) and out-of-plane (Z)
directions, for example, for TeP. They show consistently
that, with an increasing layer thickness, the spatial charge
distributions of the gap states induced by the substitutional
Te become more delocalized. One can see this from the
in-plane charge distribution in Figs. 4(a)–4(b) where there

is a significant reduction at the Te site especially between the
ML and the 2L. Likewise, there is also a significant increase at
the tail region away from Te. Although the increase may look
small, taking into account the geometric factor of R2, where
R is the distance to Te indicates that the effect should be on
par with that in the center since the total number of electrons
for each state is conserved. One can also see this from the
out-of-plane charge distribution in Fig. 4(c) where the tail
extends into the second layer noticeably for the 2L and the 3L
but not for the ML. One also can see a similar but less dramatic
effect in the charge contour plot in Fig. 4(d). It appears that,
in terms of the charge distribution, the most significant effect
is between the ML and the 2L, which is consistent with the
decreasing tendency of ionization energy.

To summarize, although Ref. [13] laid the foundation for
first-principles determination of charged defects in monolayer
2D materials using the standard jellium background approx-
imation, it requires a generalization of the approach to cases
which are mostly used in the practical electronic devices, i.e.,
few/multilayer 2D semiconductors instead of monolayer, a
layer of 2D material on a substrate, and surfaces/interfaces. It
also requires a generalization to systems of arbitrary geometry
and hence with less of a symmetry requirement in the method.
These are carried out here. The method here is general
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FIG. 4. Nonaveraged linear charge density (passing TeP) along the in-plane (a) X, (b) Y , and (c) out-of-plane Z directions in ML BP, 2L
BP, and 3L BP, respectively. The vertical solid line marks the position of the Te impurity. The dotted lines in (c) denote the physical boundary

of each P layer. (d) Charge contour plots with an isosurface of 8 × 10−4 e/Å
3

.

and suitable for all 2D materials with arbitrary thickness
and geometry. With the generalized approach, the dopability
of 2D and quasi-2D materials, which is crucial for their
application in electronic and optoelectronic devices, can be
evaluated by the calculation of ionization energy. Application
to black phosphorus, in particular, to substitutional Te (TeP,
the most promising candidate for n-type doping) in few-layer
BP reveals that enhanced screening indeed exists and can
reduce the Coulomb attraction between opposite charges to
result in the dopant wave-function delocalization as well as
shallower levels. The ionization energy of TeP decreases by
nearly half in 3L BP (0.33 eV) in comparison with that in
ML BP (0.67 eV). These results further suggest that, for 2D
applications, single-layer materials may not always be the best
choice, but few-layer materials can offer the most balanced
properties for novel electronic and optoelectronic applications.
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APPENDIX: CALCULATION OF ε⊥ FOR THE 2D
MATERIAL WITH A CERTAIN THICKNESS

The calculated dielectric constant in VASP for a supercell
with LZ can be approximated by an average of the dielectric
constant for the 2D material with thickness of 2d0(ε⊥) and
that for the vacuum region (with a thickness of LZ − 2d0)
[16], namely,

εave
⊥ = 2d0ε⊥ + (LZ − 2d0) × 1

LZ

.

Here, ε⊥ is the relative dielectric constant we needed for
the 2D material (the vertical scope from the top atom to the
bottom atom), and the relative dielectric constant of vacuum

155424-6
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is 1. The expression can change to

εave
⊥ = 2d0ε⊥ + (LZ − 2d0)

LZ

= 1 + 1

LZ

[2d0(ε⊥ − 1)] = 1 + 1

LZ

k.

As such, εave
⊥ is inversely proportional to LZ with a slope k. We can get ε⊥ via the fitting slope k, i.e., ε⊥ = 1 + k

2d0
.
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