
Precise measurement of weak strain by second-harmonic
generation from silicon (111) surface

Ji-Hong Zhao,1,* Xian-Bin Li,1 Zhan-Guo Chen,1 Xing Meng,2 and Gang Jia1

1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering,
Jilin University, 2699 Qianjin Street, Changchun 130012, China

2College of Physics, Jilin University, 119 Jiefang Road, Changchun 130012, China
*Corresponding author: zhaojihong@jlu.edu.cn

Received December 6, 2012; revised February 22, 2013; accepted March 17, 2013;
posted March 19, 2013 (Doc. ID 181284); published April 12, 2013

The weak strain induced by uniaxial strain device is calibrated by strain-induced second-harmonic generation
(SISHG) from silicon (111) surface. Dependences of the strain-induced second-harmonic intensity on sample azi-
muth angle show that the strain leads to increase of SH intensity. The high consistency of the SH-measured strain
and the applied strain indicates that weak strain can be accurately calibrated by SISHG. The small applied strain
does not greatly affect the 3m symmetry of silicon (111) surface, but enhances the SH intensity evidently. The bulk
inversion symmetry of crystal silicon vanished under applying of uniaxial strain and this also has demonstrated by
first-principles simulation. Furthermore, the theoretical relative variation of Si–Si bond length agrees exactly with
the applied strain along [111] direction. © 2013 Optical Society of America

OCIS codes: 190.2620, 190.4350.

1. INTRODUCTION
In complementary metal-oxide semiconductor (CMOS) struc-
tures, scaling is becoming increasingly more difficult techni-
cally and as a result the cost is reaching the level at which
alternative methods are being sought to enhance device per-
formance. New materials and device architectures are being
proposed. Advances in deposition of tensile-strained silicon,
along with its improved electron and hole mobility, has
spurred much work from a number of reputable research
groups [1–6]. In addition, properties of micronano devices,
such as MOS transistor, are sensitively affected by the intrin-
sic mechanical strain built in silicon/silicon dioxide interface,
which determines the displacement of atoms, subsurface
layer symmetry modification, charge redistribution, dioxide-
traps charging, and defect formation [7–9]. So developing a
strain-calibrated technique is necessary for systematically
detecting the strain exist in MOS device.

Numerous diagnostic procedures have been employed in
the past for strain characterization of semiconductor samples,
the most pronounced example being the optical techniques.
They are nondestructive and offer the possibility of in situ

applications. Raman spectroscopy [10], a well-established ex-
perimental tool, is based on the detection of strain-induced
phonon frequency shifts. Piezo-electroreflectance and piezo-
photoreflectance spectroscopy, on the other hand, are applied
to investigate the effect of strain on the electronic bands
[11,12]. These methods can detect strains in the range of
10−3, which, however, is not sufficient in many applications.
Optical second-harmonic generation (SHG) as a high-
sensitivity nonlinear optical method has been implemented
for in situ characterizing silicon surface by resolving the tiny
change of centrosymmetry of Si bulk materials [8,13]. In ad-
dition, SHG provided a much higher sensitivity and thus

promised to be suitable for the detection of very small
amounts of strain (10−5–10−4).

In our previous work the strain-induced second-harmonic
generation (SISHG) in silicon surface has been investigated,
and the qualitatively quadratic relation between SH intensity
and external strain was described and determined [14–16].
But the strain was not determined quantitatively by SHG mea-
surements. In this paper, strain was quantitatively determined
by SISHG and crystal structure of strained silicon was deter-
mined by first-principles calculation in theory.

2. STRAIN DEVICE AND SISHG
EXPERIMENTS
In order to cause strain to silicon wafer, the uniaxial strain de-
vice was designed first and the schematic diagram is shown in
the inset of Fig. 1. This strain device consisted of a micrometer
systemandcouldmoveasharpedgeagainstthecenterofastripe
supported at its ends by a fixed coverwith a hole [17]. For small
deformations compared with the dimensions of the silicon
stripe there is a neutral surface in the middle part of the stripe.
In order to form uniaxial strain, a silicon (111) wafer of 0.5 mm
thicknesswascut intonarrowstripes (32 mm × 4 mm,a length/
width ratio larger than 8) along the �11̄0� direction, and the uni-
axial strainwas inducedin thesiliconstripebymovingthesharp
edgeof thestraindevicealong the [111]direction(that iszaxis),
shown in Fig. 1. The tension strain along �11̄0� direction of the
silicon stripe (that is x axis) depends on deformation J�r� de-
scribed by equation J�r� � J0�a − r��2a2 � 2ar − r2�∕2a3,
where r is the distance from the center of the stripe, 2a is the
length of the silicon stripe, J0 is the deformation at center of
the stripe. By using this equation, the maximum strain ε0 at
the stripe center is independent of the elasticity of materials
and it can be calculated as εxx � ε0 � 3hJ0∕2a2. As for the rest
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of the strain components, only the one perpendicular to the
surface of the stripe will be nonzero, and it can be calculated
by the equation εzz � ε0�2�S11 � 2S12� � �6S12 − S44��∕�8�S11�
2S12� � 2S44�,whereS11,S12,andS44 aretheelasticcompliances
of the material, for silicon the elastic compliances
S11 � 7.68 × 10−12 Pa−1, S12 � −2.14 × 10−12 Pa−1, and S44 �
12.56 × 10−12 Pa−1, so the strain along z axis can be calculated
to εzz � −0.356εxx [17,18].

By moving the sharp edge of the strain device, the center
deformation of silicon stripe can be given from micrometer
system and the strain value should be determined by equation
εxx � ε0 � 3hJ0∕2a2 theoretically. Under the influence of a
central force the stripe will develop along its long axis a strain
proportional to the curvature. At the surface of a silicon stripe
with thickness h this strain will be εxx � ε0 � h∕2R, R being
the radius of curvature, which can be directly measured using
the deflection of a laser beam [19]. The excellent fit of equa-
tion εxx � ε0 � h∕2R to the data in [13] indicates that this
strain device can be used for calculating the applied strain
along the stripe without any adjustable parameters.

For SISHG measurement, the output of a femtosecond
Ti-sapphire oscillator laser is used as a source of the funda-
mental radiation with the wavelength of 802 nm and the pulse
width of 120 fs [16]. The experimental setup is similar as the
SH-measured system described in [14], and the schematic dia-
gram of this system is shown in Fig. 1. The incident light was
focused onto the sample at an angle of 45° with respect to the
z axis with s-polarization. The reflected light was selected by a
polarization analyzer as s-polarization and p-polarization, re-
spectively. Then the SH signal was filtrated orderly by the sa-
turated CuSO4 solution and a 400 nm interference filter, and
finally detected by a detector that was composed of a photo-
multiplier tube and a lock-in amplifier. In SH experiments the
strain device can rotate with revolving setup controlled by a
step motor.

From the center deformation J�r� expression of the strain
device, it is obvious that the component of strain along x di-
rection is inhomogeneous. An application of inhomogeneous
strain to the silicon crystal can decrease its inversion sym-
metry [20]. So the inversion symmetry of silicon subsurface
layer would be destroyed in the volume near the center of

the strained silicon stripe. Therefore, in the dipole approxima-
tion, the bulk dipolar contribution in SH signals generated
from silicon surface is not equal to zero. In other words, a
strain-induced second-order nonlinear susceptibility appears
and it will enhance the SH intensity evidently.

By rotating the silicon stripe around its surface normal to
change the azimuthal angle, the s-in∕p-out polarized and
s-in∕s-out polarized SH intensities as a function of the azimu-
thal angle of the silicon sample can be measured, respectively.
According to the phenomenological theory, the s-in∕p-out po-
larized and s-in∕s-out polarized SH intensities generated from
silicon surface can, respectively, be written as [10,20,21]

Is→p�2ω� � jasp � csp cos 3ϕj2

�
�
jaspj2 �

jcspj2
2

�
� Re�aspc�sp��ei3ϕ � e−i3ϕ�

� jcspj2
4

�ei6ϕ � e−i6ϕ�; (1)

Is→s�2ω� � jbss sin 3ϕj2 � jbssj2
2

−

jbssj2
4

�ei6ϕ � e−i6ϕ�; (2)

where azimuthal angle ϕ is measured from the �11̄0� direction,
for unstrained silicon as;p, bs;s and cs;p represent the total SH
field strength which may result from the surface dipole, bulk
quadrupole, and dc-electronic field-induced bulk dipole. Com-
paratively, for the strained silicon an additional strain-induced

electric dipolar χ�2�strain should be included in coefficients
as;p, bs;s, and cs;p. As a result, for strained silicon both the
p-polarized and s-polarized SH intensities should be increased
compared with unstrained counterpart. The experimental re-
sults are in accord with our theoretical analysis very well and
the experimental data are shown in Figs. 2(a) and 3(a), respec-
tively. Curve A corresponds to the SH intensity generated
from unstrained silicon surface and the SH signal of curve
B is obtained from strained silicon with a strain value of
ε0 � 3.86 × 10−4. Compared to the SH intensity of Curve A
and B at the same azimuthal angle, it is apparent that the ap-
plication of strain can enhance the intensity of SH greatly. In a
previous report [14], we considered that the external uniaxial
strain can reduce the bulk inversion symmetry of silicon crys-
tal, then such a small strain (about 10−4) does not greatly af-
fect the 3 m symmetry of silicon (111) surface, but it can
enhance the SH intensity evidently. So the novanishing inde-

pendent components of χ�2�strain tensor still are χ�2�;strainzzz ,

χ�2�;strainzxx � χ�2�;strainzyy , χ�2�;strainyyy � χ�2�;strainxxy . Also, this viewpoint
would be provided by first-principles simulation.

3. RESULTS AND DISCUSSION
The s-in∕p-out polarized SH electric field reflected from
strained silicon is proportional to χ�2�;strainzyy [10,20], that is,

Es→p�2ω� ∝ iχ�2�;strainzyy � K2z�2ω�χPzyzy; (3)

where χPzyzy is the bulk quadrupole contribution that is inde-
pendent of the external strain, it is a constant containing the
Fresnel reflection factors and K2z�2ω�χPzyzy � 4 × 10−10,
χ�2�;strainzyy is the strain-induced component of second-order bulk
contribution and it can be calculated as follows [14]:

Fig. 1. (Color online) SHG experimental setup. The s-polarized fun-
damental light of 800 nm was focused onto the strained sample at an
incident angle of 45° with respect to Si [111] direction. The reflected p-
polarized and s-polarized SHG signal was selected using a polarim-
eter, filtered by the saturated CuSO4 solution, and then detected by
detector. Inset is a schematic diagram of uniaxial strain device.
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χ�2�;strainzyy �esu� � 1.03 × 10−6ε0: (4)

According to its relation with χ�2�;strainzyy , the other component
χ�2�;strainyyy can be described as follows:

χ�2�;strainyyy �esu� � −0.78 × 10−6ε0: (5)

Figures 2(b) and 3(b) show the Fourier transform pattern of
Figs. 2(a) and 3(a). From Fourier transformation spectrum of
SH intensity, it is obvious that the fundamental, threefold, and
sixfold frequency components are dominant for s-in∕p-out po-
larized SHG; then for s-in-∕s-out polarized SHG the fundamen-
tal and sixfold frequency components are dominant. The
coefficients csp in Eq. (1) can be calculated by the Fourier
transform. By using Eq. (3) we found that [10]

jcsp�strain�j2
jcsp�0�j2

� jiχ�2�;strainzyy � K2zχ
P
zyzyj2

jK2zχ
P
zyzyj2

� 1�
���� χ

�2�;strain
zyy

K2zχ
P
zyzy

����
2

:

(6)

Here, csp�strain� corresponds to the SH field strength from
silicon (111) surface while external strain was applied to the
silicon stripe, and csp�0� corresponds to the SH field strength
from unstrained silicon (111) surface. From the Fourier trans-
form in Fig. 2(b), for the strain ε0 � 3.86 × 10−4 calculated by
deformation of the strain device, csp�strain�∕csp�0� � 1.380. So
the strain value obtained by the SH method can be calculated
to ε0 � 3.69 × 10−4 by Eq. (4).

Similarly, the strain value also can be obtained by
bss�strain�∕bss�0� and Eq. (5). Replacing csp and χζyy by bss

and χyyy, respectively, the strain value can be calculated also
by bss�strain�∕bss�0� with Eq. (6) From the Fourier transform
in Fig. 3(b), for the strain ε0 � 3.86 × 10−4 calculated by defor-
mation of the strain device, bss�strain�∕bss�0� � 1.204. So the
strain value obtained by the SH method can be calculated to
ε0 � 3.44 × 10−4 by Eq. (5) and (6).

From the calculations we can find that the strain measured
by SHG is very close to the value provided by the strain device
and this is appreciate both for s-in∕p-out and s-in∕s-out polar-
ized SH signal measurement. In other words, the strain formed
in silicon stripe can be measured accurately by the SISHG
method. For the difference between strain values “calculated
by deformation of the strain device” and “obtained by the SH
method,” it is mainly caused by the accuracy of the strain de-
vice itself and the SH measurement system. Also the strain
difference measured by SH between p-polarized and s-polar-
ized SH mainly comes from the SH measurement system that
would affect the accuracy of Fourier transformation coeffi-
cient evidently. From both the threefold symmetry in Fig. 2(a)
and sixfold symmetry in Fig. 3(a) of SH intensity as a function
of azimuthal angle we considered that the symmetry of
strained silicon subsurface is similar to the symmetry of sili-
con (111) surface.

In this paper, we used first-principles simulation to describe
the change of crystal structure after applying strain. For the
uniaxial strain, the strain tensor can be expressed as

ε �
 εxx 0 0

0 0 0
0 0 εzz

!
: (7)

Fig. 2. (Color online) (a) s-polarized input/p-polarized output SH in-
tensity as a function of azimuthal angle of Si (111) sample. Curve A
corresponds to the SHG from unstrained Si (111) wafer and curve B is
measured when the tensile strain is equal to 3.86 × 10−4. (b) Fourier
transforms of SHG patterns of (a). Graph A0 is the Fourier transform
corresponding to curve A of (a) and graph B0 is the Fourier transform
corresponding to curve B of (a).

Fig. 3. (Color online) (a) s-polarized input/s-polarized output SH in-
tensity as a function of azimuthal angle of Si (111) sample. Curve A
corresponds to the SHG from unstrained Si (111) wafer and curve B is
measured when the tensile strain is equal to 3.86 × 10−4. (b) Fourier
transforms of SHG patterns of (a). Graph A0 is the Fourier transform
corresponding to curve A of (a) and graph B0 is the Fourier transform
corresponding to curve B of (a).
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In experiments, the strain of εxx � 3.86 × 10−4 is considered,
the other two strain components are εyy � 0 and εzz �
−1.37 × 10−4, respectively. Here, x, y, and z axis correspond to
laboratorial coordinates: �11̄0�, �112̄�, and [111] crystallo-
graphic orientation, respectively. The strain tensor ε in crys-
tallophysical coordinates by transformation of coordinates
has the form

0
BBBBBB@

εx0x0
εy0y0
εz0z0
εy0z0
εz0x0
εx0y0

1
CCCCCCA

�

0
BBBBBB@

�3εxx � 2εzz�∕6
�3εxx � 2εzz�∕6
εzz∕3
εzz∕3
εzz∕3
�−3εxx � 2εzz�∕6

1
CCCCCCA

�

0
BBBBBB@

1.472 × 10−4

1.472 × 10−4

−0.458 × 10−4

−0.458 × 10−4

−0.458 × 10−4

−2.388 × 10−4

1
CCCCCCA
; (8)

where x0, y0, and z0 are crystallophysical coordinates, they cor-
respond to [100], [010], and [001] directions, respectively. So
the stress tensor can be calculated with expression
εij � Sijklσkl, and they are

σ �

0
BBBBBB@

σx0x0
σy0y0
σz0z0
σy0z0
σz0x0
σx0y0

1
CCCCCCA

�

0
BBBBBB@

0.03092
0.03092
0.01127
−0.00365
−0.00365
−0.01901

1
CCCCCCA

�GPa�: (9)

Using the stress tensor mentioned above we simulated the
crystal structure at the center of the strained silicon stripe us-
ing first-principles calculation. Our calculations were carried
out using density-functional theory with a plane-wave basis
set as implemented in the CASTEP code [22]. The core elec-
trons are treated with Vanderbilt ultrasoft pseudopotentials
[23]. All calculations are done with a cutoff energy of
160 eV. Lattice parameters of strained silicon and unstrained
silicon crystal are marked in Table 1. The calculation results
show that for crystal silicon lattice parameters a � b � c, α �
β � γ � 90° that belong to cubic crystal system, then for the
strained silicon lattice parameters a � b ≠ c, α � β ≠ γ ≠ 90°,
so the silicon crystal symmetry was reduced and strain in-
duced diapering of crystal silicon inversion symmetrical
center. Figure 4 shows variation of Si–Si bond length of the
crystal silicon before and after strain. Comparing Figs. 4(a)
and 4(b), we find that all the four bond lengths of crystal
silicon shorten under applying strain. In addition, the primary
four equivalent Si–Si bond lengths of crystal silicon changed
unequal after strain applying. Although the variation of Si–Si
bond length is very small, it can reduce the inversion sym-
metry of crystal silicon remarkably and induce the second-
order nonlinear effects. It is worth noting that the maximum
of relative variation of Si–Si bond length is equal to 1.3694 ×
10−4 according to Fig. 4. This value is very close to the

applying strain value (1.37 × 10−4) along [111] direction in ex-
periment. It is different from experimental measurement re-
sults, first-principles simulation method can give a precise
structure-parameter of silicon semiconductor from the atomic
scale before and after straining. So the strain obtained from
first-principles simulation is close to the known one. As a re-
sult, we can have a conclusion, for the small strain (10−4), it
can reduce the bulk symmetry of crystal silicon, but does not
greatly affect the 3 m symmetry of silicon (111) surface.

4. CONCLUSION
In conclusion, the SISHG was investigated using the uniaxial
strain device designed. The strain calculated by the SHG
method agrees with that measured by the strain device very
well both for p-polarized and s-polarized SH signal. First-
principles calculations show that the external uniaxial strain
can reduce the bulk inversion symmetry of crystal silicon due
to change of crystal structure. Additionally, after strain apply-
ing the relative variation of Si–Si bond length agrees with the
strain value along [111] direction very well. So this investiga-
tion gave direct evidence that SHG is a precise measurement
method for small strain of semiconductor silicon surface.
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